ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funexw GIF version

Theorem funexw 6091
Description: Weak version of funex 5719 that holds without ax-coll 4104. If the domain and codomain of a function exist, so does the function. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Assertion
Ref Expression
funexw ((Fun 𝐹 ∧ dom 𝐹𝐵 ∧ ran 𝐹𝐶) → 𝐹 ∈ V)

Proof of Theorem funexw
StepHypRef Expression
1 xpexg 4725 . . 3 ((dom 𝐹𝐵 ∧ ran 𝐹𝐶) → (dom 𝐹 × ran 𝐹) ∈ V)
213adant1 1010 . 2 ((Fun 𝐹 ∧ dom 𝐹𝐵 ∧ ran 𝐹𝐶) → (dom 𝐹 × ran 𝐹) ∈ V)
3 funrel 5215 . . . 4 (Fun 𝐹 → Rel 𝐹)
4 relssdmrn 5131 . . . 4 (Rel 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
53, 4syl 14 . . 3 (Fun 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
653ad2ant1 1013 . 2 ((Fun 𝐹 ∧ dom 𝐹𝐵 ∧ ran 𝐹𝐶) → 𝐹 ⊆ (dom 𝐹 × ran 𝐹))
72, 6ssexd 4129 1 ((Fun 𝐹 ∧ dom 𝐹𝐵 ∧ ran 𝐹𝐶) → 𝐹 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 973  wcel 2141  Vcvv 2730  wss 3121   × cxp 4609  dom cdm 4611  ran crn 4612  Rel wrel 4616  Fun wfun 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622  df-fun 5200
This theorem is referenced by:  mptexw  6092  mpoexw  6192
  Copyright terms: Public domain W3C validator