ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funexw GIF version

Theorem funexw 6209
Description: Weak version of funex 5819 that holds without ax-coll 4166. If the domain and codomain of a function exist, so does the function. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Assertion
Ref Expression
funexw ((Fun 𝐹 ∧ dom 𝐹𝐵 ∧ ran 𝐹𝐶) → 𝐹 ∈ V)

Proof of Theorem funexw
StepHypRef Expression
1 xpexg 4796 . . 3 ((dom 𝐹𝐵 ∧ ran 𝐹𝐶) → (dom 𝐹 × ran 𝐹) ∈ V)
213adant1 1018 . 2 ((Fun 𝐹 ∧ dom 𝐹𝐵 ∧ ran 𝐹𝐶) → (dom 𝐹 × ran 𝐹) ∈ V)
3 funrel 5296 . . . 4 (Fun 𝐹 → Rel 𝐹)
4 relssdmrn 5211 . . . 4 (Rel 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
53, 4syl 14 . . 3 (Fun 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
653ad2ant1 1021 . 2 ((Fun 𝐹 ∧ dom 𝐹𝐵 ∧ ran 𝐹𝐶) → 𝐹 ⊆ (dom 𝐹 × ran 𝐹))
72, 6ssexd 4191 1 ((Fun 𝐹 ∧ dom 𝐹𝐵 ∧ ran 𝐹𝐶) → 𝐹 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981  wcel 2177  Vcvv 2773  wss 3170   × cxp 4680  dom cdm 4682  ran crn 4683  Rel wrel 4687  Fun wfun 5273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-br 4051  df-opab 4113  df-xp 4688  df-rel 4689  df-cnv 4690  df-dm 4692  df-rn 4693  df-fun 5281
This theorem is referenced by:  mptexw  6210  mpoexw  6311
  Copyright terms: Public domain W3C validator