| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funexw | GIF version | ||
| Description: Weak version of funex 5819 that holds without ax-coll 4166. If the domain and codomain of a function exist, so does the function. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| funexw | ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵 ∧ ran 𝐹 ∈ 𝐶) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexg 4796 | . . 3 ⊢ ((dom 𝐹 ∈ 𝐵 ∧ ran 𝐹 ∈ 𝐶) → (dom 𝐹 × ran 𝐹) ∈ V) | |
| 2 | 1 | 3adant1 1018 | . 2 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵 ∧ ran 𝐹 ∈ 𝐶) → (dom 𝐹 × ran 𝐹) ∈ V) |
| 3 | funrel 5296 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 4 | relssdmrn 5211 | . . . 4 ⊢ (Rel 𝐹 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) | |
| 5 | 3, 4 | syl 14 | . . 3 ⊢ (Fun 𝐹 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) |
| 6 | 5 | 3ad2ant1 1021 | . 2 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵 ∧ ran 𝐹 ∈ 𝐶) → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) |
| 7 | 2, 6 | ssexd 4191 | 1 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵 ∧ ran 𝐹 ∈ 𝐶) → 𝐹 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3170 × cxp 4680 dom cdm 4682 ran crn 4683 Rel wrel 4687 Fun wfun 5273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-xp 4688 df-rel 4689 df-cnv 4690 df-dm 4692 df-rn 4693 df-fun 5281 |
| This theorem is referenced by: mptexw 6210 mpoexw 6311 |
| Copyright terms: Public domain | W3C validator |