ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funex Unicode version

Theorem funex 5534
Description: If the domain of a function exists, so does the function. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of fnex 5533. (Note: Any resemblance between F.U.N.E.X. and "Have You Any Eggs" is purely a coincidence originated by Swedish chefs.) (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
funex  |-  ( ( Fun  F  /\  dom  F  e.  B )  ->  F  e.  _V )

Proof of Theorem funex
StepHypRef Expression
1 funfn 5058 . 2  |-  ( Fun 
F  <->  F  Fn  dom  F )
2 fnex 5533 . 2  |-  ( ( F  Fn  dom  F  /\  dom  F  e.  B
)  ->  F  e.  _V )
31, 2sylanb 279 1  |-  ( ( Fun  F  /\  dom  F  e.  B )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1439   _Vcvv 2620   dom cdm 4452   Fun wfun 5022    Fn wfn 5023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036
This theorem is referenced by:  opabex  5535  mptexg  5536  funrnex  5899  oprabexd  5912  oprabex  5913  mpt2exxg  5991
  Copyright terms: Public domain W3C validator