ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundmfibi Unicode version

Theorem fundmfibi 6648
Description: A function is finite if and only if its domain is finite. (Contributed by AV, 10-Jan-2020.)
Assertion
Ref Expression
fundmfibi  |-  ( Fun 
F  ->  ( F  e.  Fin  <->  dom  F  e.  Fin ) )

Proof of Theorem fundmfibi
StepHypRef Expression
1 fundmfi 6647 . . 3  |-  ( ( F  e.  Fin  /\  Fun  F )  ->  dom  F  e.  Fin )
21ancoms 264 . 2  |-  ( ( Fun  F  /\  F  e.  Fin )  ->  dom  F  e.  Fin )
3 funfn 5045 . . 3  |-  ( Fun 
F  <->  F  Fn  dom  F )
4 fnfi 6646 . . 3  |-  ( ( F  Fn  dom  F  /\  dom  F  e.  Fin )  ->  F  e.  Fin )
53, 4sylanb 278 . 2  |-  ( ( Fun  F  /\  dom  F  e.  Fin )  ->  F  e.  Fin )
62, 5impbida 563 1  |-  ( Fun 
F  ->  ( F  e.  Fin  <->  dom  F  e.  Fin ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    e. wcel 1438   dom cdm 4438   Fun wfun 5009    Fn wfn 5010   Fincfn 6457
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-1o 6181  df-er 6292  df-en 6458  df-fin 6460
This theorem is referenced by:  f1dmvrnfibi  6653  fihasheqf1oi  10196  negfi  10659
  Copyright terms: Public domain W3C validator