Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funbrfvb | Unicode version |
Description: Equivalence of function value and binary relation. (Contributed by NM, 26-Mar-2006.) |
Ref | Expression |
---|---|
funbrfvb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 5203 | . 2 | |
2 | fnbrfvb 5512 | . 2 | |
3 | 1, 2 | sylanb 282 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 class class class wbr 3967 cdm 4589 wfun 5167 wfn 5168 cfv 5173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4085 ax-pow 4138 ax-pr 4172 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-br 3968 df-opab 4029 df-id 4256 df-xp 4595 df-rel 4596 df-cnv 4597 df-co 4598 df-dm 4599 df-iota 5138 df-fun 5175 df-fn 5176 df-fv 5181 |
This theorem is referenced by: funbrfv2b 5516 dfimafn 5520 funimass4 5522 dvidlemap 13156 pilem3 13200 |
Copyright terms: Public domain | W3C validator |