ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvimacnvi Unicode version

Theorem fvimacnvi 5717
Description: A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.)
Assertion
Ref Expression
fvimacnvi  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( F `  A
)  e.  B )

Proof of Theorem fvimacnvi
StepHypRef Expression
1 snssi 3788 . . 3  |-  ( A  e.  ( `' F " B )  ->  { A }  C_  ( `' F " B ) )
2 funimass2 5371 . . 3  |-  ( ( Fun  F  /\  { A }  C_  ( `' F " B ) )  ->  ( F " { A } ) 
C_  B )
31, 2sylan2 286 . 2  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( F " { A } )  C_  B
)
4 cnvimass 5064 . . . . 5  |-  ( `' F " B ) 
C_  dom  F
54sseli 3197 . . . 4  |-  ( A  e.  ( `' F " B )  ->  A  e.  dom  F )
6 funfvex 5616 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  e.  _V )
7 snssg 3778 . . . . 5  |-  ( ( F `  A )  e.  _V  ->  (
( F `  A
)  e.  B  <->  { ( F `  A ) }  C_  B ) )
86, 7syl 14 . . . 4  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  <->  { ( F `  A
) }  C_  B
) )
95, 8sylan2 286 . . 3  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( ( F `  A )  e.  B  <->  { ( F `  A
) }  C_  B
) )
10 funfn 5320 . . . . . 6  |-  ( Fun 
F  <->  F  Fn  dom  F )
11 fnsnfv 5661 . . . . . 6  |-  ( ( F  Fn  dom  F  /\  A  e.  dom  F )  ->  { ( F `  A ) }  =  ( F " { A } ) )
1210, 11sylanb 284 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  { ( F `  A ) }  =  ( F " { A } ) )
135, 12sylan2 286 . . . 4  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  ->  { ( F `  A ) }  =  ( F " { A } ) )
1413sseq1d 3230 . . 3  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( { ( F `
 A ) } 
C_  B  <->  ( F " { A } ) 
C_  B ) )
159, 14bitrd 188 . 2  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( ( F `  A )  e.  B  <->  ( F " { A } )  C_  B
) )
163, 15mpbird 167 1  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( F `  A
)  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   _Vcvv 2776    C_ wss 3174   {csn 3643   `'ccnv 4692   dom cdm 4693   "cima 4696   Fun wfun 5284    Fn wfn 5285   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298
This theorem is referenced by:  fvimacnv  5718  elpreima  5722  psrbaglesuppg  14549
  Copyright terms: Public domain W3C validator