ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssimaexg Unicode version

Theorem ssimaexg 5558
Description: The existence of a subimage. (Contributed by FL, 15-Apr-2007.)
Assertion
Ref Expression
ssimaexg  |-  ( ( A  e.  C  /\  Fun  F  /\  B  C_  ( F " A ) )  ->  E. x
( x  C_  A  /\  B  =  ( F " x ) ) )
Distinct variable groups:    x, A    x, B    x, F
Allowed substitution hint:    C( x)

Proof of Theorem ssimaexg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 imaeq2 4949 . . . . . 6  |-  ( y  =  A  ->  ( F " y )  =  ( F " A
) )
21sseq2d 3177 . . . . 5  |-  ( y  =  A  ->  ( B  C_  ( F "
y )  <->  B  C_  ( F " A ) ) )
32anbi2d 461 . . . 4  |-  ( y  =  A  ->  (
( Fun  F  /\  B  C_  ( F "
y ) )  <->  ( Fun  F  /\  B  C_  ( F " A ) ) ) )
4 sseq2 3171 . . . . . 6  |-  ( y  =  A  ->  (
x  C_  y  <->  x  C_  A
) )
54anbi1d 462 . . . . 5  |-  ( y  =  A  ->  (
( x  C_  y  /\  B  =  ( F " x ) )  <-> 
( x  C_  A  /\  B  =  ( F " x ) ) ) )
65exbidv 1818 . . . 4  |-  ( y  =  A  ->  ( E. x ( x  C_  y  /\  B  =  ( F " x ) )  <->  E. x ( x 
C_  A  /\  B  =  ( F "
x ) ) ) )
73, 6imbi12d 233 . . 3  |-  ( y  =  A  ->  (
( ( Fun  F  /\  B  C_  ( F
" y ) )  ->  E. x ( x 
C_  y  /\  B  =  ( F "
x ) ) )  <-> 
( ( Fun  F  /\  B  C_  ( F
" A ) )  ->  E. x ( x 
C_  A  /\  B  =  ( F "
x ) ) ) ) )
8 vex 2733 . . . 4  |-  y  e. 
_V
98ssimaex 5557 . . 3  |-  ( ( Fun  F  /\  B  C_  ( F " y
) )  ->  E. x
( x  C_  y  /\  B  =  ( F " x ) ) )
107, 9vtoclg 2790 . 2  |-  ( A  e.  C  ->  (
( Fun  F  /\  B  C_  ( F " A ) )  ->  E. x ( x  C_  A  /\  B  =  ( F " x ) ) ) )
11103impib 1196 1  |-  ( ( A  e.  C  /\  Fun  F  /\  B  C_  ( F " A ) )  ->  E. x
( x  C_  A  /\  B  =  ( F " x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348   E.wex 1485    e. wcel 2141    C_ wss 3121   "cima 4614   Fun wfun 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206
This theorem is referenced by:  tgrest  12963
  Copyright terms: Public domain W3C validator