ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssimaexg Unicode version

Theorem ssimaexg 5623
Description: The existence of a subimage. (Contributed by FL, 15-Apr-2007.)
Assertion
Ref Expression
ssimaexg  |-  ( ( A  e.  C  /\  Fun  F  /\  B  C_  ( F " A ) )  ->  E. x
( x  C_  A  /\  B  =  ( F " x ) ) )
Distinct variable groups:    x, A    x, B    x, F
Allowed substitution hint:    C( x)

Proof of Theorem ssimaexg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 imaeq2 5005 . . . . . 6  |-  ( y  =  A  ->  ( F " y )  =  ( F " A
) )
21sseq2d 3213 . . . . 5  |-  ( y  =  A  ->  ( B  C_  ( F "
y )  <->  B  C_  ( F " A ) ) )
32anbi2d 464 . . . 4  |-  ( y  =  A  ->  (
( Fun  F  /\  B  C_  ( F "
y ) )  <->  ( Fun  F  /\  B  C_  ( F " A ) ) ) )
4 sseq2 3207 . . . . . 6  |-  ( y  =  A  ->  (
x  C_  y  <->  x  C_  A
) )
54anbi1d 465 . . . . 5  |-  ( y  =  A  ->  (
( x  C_  y  /\  B  =  ( F " x ) )  <-> 
( x  C_  A  /\  B  =  ( F " x ) ) ) )
65exbidv 1839 . . . 4  |-  ( y  =  A  ->  ( E. x ( x  C_  y  /\  B  =  ( F " x ) )  <->  E. x ( x 
C_  A  /\  B  =  ( F "
x ) ) ) )
73, 6imbi12d 234 . . 3  |-  ( y  =  A  ->  (
( ( Fun  F  /\  B  C_  ( F
" y ) )  ->  E. x ( x 
C_  y  /\  B  =  ( F "
x ) ) )  <-> 
( ( Fun  F  /\  B  C_  ( F
" A ) )  ->  E. x ( x 
C_  A  /\  B  =  ( F "
x ) ) ) ) )
8 vex 2766 . . . 4  |-  y  e. 
_V
98ssimaex 5622 . . 3  |-  ( ( Fun  F  /\  B  C_  ( F " y
) )  ->  E. x
( x  C_  y  /\  B  =  ( F " x ) ) )
107, 9vtoclg 2824 . 2  |-  ( A  e.  C  ->  (
( Fun  F  /\  B  C_  ( F " A ) )  ->  E. x ( x  C_  A  /\  B  =  ( F " x ) ) ) )
11103impib 1203 1  |-  ( ( A  e.  C  /\  Fun  F  /\  B  C_  ( F " A ) )  ->  E. x
( x  C_  A  /\  B  =  ( F " x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167    C_ wss 3157   "cima 4666   Fun wfun 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266
This theorem is referenced by:  tgrest  14405
  Copyright terms: Public domain W3C validator