ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvop Unicode version

Theorem funfvop 5631
Description: Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 14-Oct-1996.)
Assertion
Ref Expression
funfvop  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. A ,  ( F `
 A ) >.  e.  F )

Proof of Theorem funfvop
StepHypRef Expression
1 eqid 2177 . 2  |-  ( F `
 A )  =  ( F `  A
)
2 funopfvb 5562 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  =  ( F `  A )  <->  <. A ,  ( F `
 A ) >.  e.  F ) )
31, 2mpbii 148 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. A ,  ( F `
 A ) >.  e.  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   <.cop 3597   dom cdm 4628   Fun wfun 5212   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226
This theorem is referenced by:  funfvbrb  5632  fvimacnv  5634  fnopfv  5649  fvelrn  5650  dff3im  5664  funfvima3  5753  fundmen  6809
  Copyright terms: Public domain W3C validator