ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvbrb Unicode version

Theorem funfvbrb 5671
Description: Two ways to say that  A is in the domain of  F. (Contributed by Mario Carneiro, 1-May-2014.)
Assertion
Ref Expression
funfvbrb  |-  ( Fun 
F  ->  ( A  e.  dom  F  <->  A F
( F `  A
) ) )

Proof of Theorem funfvbrb
StepHypRef Expression
1 funfvop 5670 . . 3  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. A ,  ( F `
 A ) >.  e.  F )
2 df-br 4030 . . 3  |-  ( A F ( F `  A )  <->  <. A , 
( F `  A
) >.  e.  F )
31, 2sylibr 134 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  A F ( F `  A ) )
4 funrel 5271 . . 3  |-  ( Fun 
F  ->  Rel  F )
5 releldm 4897 . . 3  |-  ( ( Rel  F  /\  A F ( F `  A ) )  ->  A  e.  dom  F )
64, 5sylan 283 . 2  |-  ( ( Fun  F  /\  A F ( F `  A ) )  ->  A  e.  dom  F )
73, 6impbida 596 1  |-  ( Fun 
F  ->  ( A  e.  dom  F  <->  A F
( F `  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164   <.cop 3621   class class class wbr 4029   dom cdm 4659   Rel wrel 4664   Fun wfun 5248   ` cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262
This theorem is referenced by:  fmptco  5724  climdm  11438  dvaddxx  14852  dvmulxx  14853  dviaddf  14854  dvimulf  14855  dvcjbr  14857
  Copyright terms: Public domain W3C validator