ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvbrb Unicode version

Theorem funfvbrb 5598
Description: Two ways to say that  A is in the domain of  F. (Contributed by Mario Carneiro, 1-May-2014.)
Assertion
Ref Expression
funfvbrb  |-  ( Fun 
F  ->  ( A  e.  dom  F  <->  A F
( F `  A
) ) )

Proof of Theorem funfvbrb
StepHypRef Expression
1 funfvop 5597 . . 3  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. A ,  ( F `
 A ) >.  e.  F )
2 df-br 3983 . . 3  |-  ( A F ( F `  A )  <->  <. A , 
( F `  A
) >.  e.  F )
31, 2sylibr 133 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  A F ( F `  A ) )
4 funrel 5205 . . 3  |-  ( Fun 
F  ->  Rel  F )
5 releldm 4839 . . 3  |-  ( ( Rel  F  /\  A F ( F `  A ) )  ->  A  e.  dom  F )
64, 5sylan 281 . 2  |-  ( ( Fun  F  /\  A F ( F `  A ) )  ->  A  e.  dom  F )
73, 6impbida 586 1  |-  ( Fun 
F  ->  ( A  e.  dom  F  <->  A F
( F `  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   <.cop 3579   class class class wbr 3982   dom cdm 4604   Rel wrel 4609   Fun wfun 5182   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  fmptco  5651  climdm  11236  dvaddxx  13307  dvmulxx  13308  dviaddf  13309  dvimulf  13310  dvcjbr  13312
  Copyright terms: Public domain W3C validator