| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funimass2 | GIF version | ||
| Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.) |
| Ref | Expression |
|---|---|
| funimass2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ (◡𝐹 “ 𝐵)) → (𝐹 “ 𝐴) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imass2 5045 | . 2 ⊢ (𝐴 ⊆ (◡𝐹 “ 𝐵) → (𝐹 “ 𝐴) ⊆ (𝐹 “ (◡𝐹 “ 𝐵))) | |
| 2 | funimacnv 5334 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐵)) = (𝐵 ∩ ran 𝐹)) | |
| 3 | 2 | sseq2d 3213 | . . . 4 ⊢ (Fun 𝐹 → ((𝐹 “ 𝐴) ⊆ (𝐹 “ (◡𝐹 “ 𝐵)) ↔ (𝐹 “ 𝐴) ⊆ (𝐵 ∩ ran 𝐹))) |
| 4 | inss1 3383 | . . . . 5 ⊢ (𝐵 ∩ ran 𝐹) ⊆ 𝐵 | |
| 5 | sstr2 3190 | . . . . 5 ⊢ ((𝐹 “ 𝐴) ⊆ (𝐵 ∩ ran 𝐹) → ((𝐵 ∩ ran 𝐹) ⊆ 𝐵 → (𝐹 “ 𝐴) ⊆ 𝐵)) | |
| 6 | 4, 5 | mpi 15 | . . . 4 ⊢ ((𝐹 “ 𝐴) ⊆ (𝐵 ∩ ran 𝐹) → (𝐹 “ 𝐴) ⊆ 𝐵) |
| 7 | 3, 6 | biimtrdi 163 | . . 3 ⊢ (Fun 𝐹 → ((𝐹 “ 𝐴) ⊆ (𝐹 “ (◡𝐹 “ 𝐵)) → (𝐹 “ 𝐴) ⊆ 𝐵)) |
| 8 | 7 | imp 124 | . 2 ⊢ ((Fun 𝐹 ∧ (𝐹 “ 𝐴) ⊆ (𝐹 “ (◡𝐹 “ 𝐵))) → (𝐹 “ 𝐴) ⊆ 𝐵) |
| 9 | 1, 8 | sylan2 286 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ (◡𝐹 “ 𝐵)) → (𝐹 “ 𝐴) ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∩ cin 3156 ⊆ wss 3157 ◡ccnv 4662 ran crn 4664 “ cima 4666 Fun wfun 5252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-fun 5260 |
| This theorem is referenced by: fvimacnvi 5676 |
| Copyright terms: Public domain | W3C validator |