Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funimass2 | GIF version |
Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.) |
Ref | Expression |
---|---|
funimass2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ (◡𝐹 “ 𝐵)) → (𝐹 “ 𝐴) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imass2 4987 | . 2 ⊢ (𝐴 ⊆ (◡𝐹 “ 𝐵) → (𝐹 “ 𝐴) ⊆ (𝐹 “ (◡𝐹 “ 𝐵))) | |
2 | funimacnv 5274 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐵)) = (𝐵 ∩ ran 𝐹)) | |
3 | 2 | sseq2d 3177 | . . . 4 ⊢ (Fun 𝐹 → ((𝐹 “ 𝐴) ⊆ (𝐹 “ (◡𝐹 “ 𝐵)) ↔ (𝐹 “ 𝐴) ⊆ (𝐵 ∩ ran 𝐹))) |
4 | inss1 3347 | . . . . 5 ⊢ (𝐵 ∩ ran 𝐹) ⊆ 𝐵 | |
5 | sstr2 3154 | . . . . 5 ⊢ ((𝐹 “ 𝐴) ⊆ (𝐵 ∩ ran 𝐹) → ((𝐵 ∩ ran 𝐹) ⊆ 𝐵 → (𝐹 “ 𝐴) ⊆ 𝐵)) | |
6 | 4, 5 | mpi 15 | . . . 4 ⊢ ((𝐹 “ 𝐴) ⊆ (𝐵 ∩ ran 𝐹) → (𝐹 “ 𝐴) ⊆ 𝐵) |
7 | 3, 6 | syl6bi 162 | . . 3 ⊢ (Fun 𝐹 → ((𝐹 “ 𝐴) ⊆ (𝐹 “ (◡𝐹 “ 𝐵)) → (𝐹 “ 𝐴) ⊆ 𝐵)) |
8 | 7 | imp 123 | . 2 ⊢ ((Fun 𝐹 ∧ (𝐹 “ 𝐴) ⊆ (𝐹 “ (◡𝐹 “ 𝐵))) → (𝐹 “ 𝐴) ⊆ 𝐵) |
9 | 1, 8 | sylan2 284 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ (◡𝐹 “ 𝐵)) → (𝐹 “ 𝐴) ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∩ cin 3120 ⊆ wss 3121 ◡ccnv 4610 ran crn 4612 “ cima 4614 Fun wfun 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-fun 5200 |
This theorem is referenced by: fvimacnvi 5610 |
Copyright terms: Public domain | W3C validator |