ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funiun Unicode version

Theorem funiun 5815
Description: A function is a union of singletons of ordered pairs indexed by its domain. (Contributed by AV, 18-Sep-2020.)
Assertion
Ref Expression
funiun  |-  ( Fun 
F  ->  F  =  U_ x  e.  dom  F { <. x ,  ( F `  x )
>. } )
Distinct variable group:    x, F

Proof of Theorem funiun
StepHypRef Expression
1 funfn 5347 . . 3  |-  ( Fun 
F  <->  F  Fn  dom  F )
2 dffn5im 5678 . . 3  |-  ( F  Fn  dom  F  ->  F  =  ( x  e.  dom  F  |->  ( F `
 x ) ) )
31, 2sylbi 121 . 2  |-  ( Fun 
F  ->  F  =  ( x  e.  dom  F 
|->  ( F `  x
) ) )
4 funfvex 5643 . . . 4  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
54ralrimiva 2603 . . 3  |-  ( Fun 
F  ->  A. x  e.  dom  F ( F `
 x )  e. 
_V )
6 dfmptg 5813 . . 3  |-  ( A. x  e.  dom  F ( F `  x )  e.  _V  ->  (
x  e.  dom  F  |->  ( F `  x
) )  =  U_ x  e.  dom  F { <. x ,  ( F `
 x ) >. } )
75, 6syl 14 . 2  |-  ( Fun 
F  ->  ( x  e.  dom  F  |->  ( F `
 x ) )  =  U_ x  e. 
dom  F { <. x ,  ( F `  x ) >. } )
83, 7eqtrd 2262 1  |-  ( Fun 
F  ->  F  =  U_ x  e.  dom  F { <. x ,  ( F `  x )
>. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799   {csn 3666   <.cop 3669   U_ciun 3964    |-> cmpt 4144   dom cdm 4718   Fun wfun 5311    Fn wfn 5312   ` cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator