ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funiun Unicode version

Theorem funiun 5774
Description: A function is a union of singletons of ordered pairs indexed by its domain. (Contributed by AV, 18-Sep-2020.)
Assertion
Ref Expression
funiun  |-  ( Fun 
F  ->  F  =  U_ x  e.  dom  F { <. x ,  ( F `  x )
>. } )
Distinct variable group:    x, F

Proof of Theorem funiun
StepHypRef Expression
1 funfn 5310 . . 3  |-  ( Fun 
F  <->  F  Fn  dom  F )
2 dffn5im 5637 . . 3  |-  ( F  Fn  dom  F  ->  F  =  ( x  e.  dom  F  |->  ( F `
 x ) ) )
31, 2sylbi 121 . 2  |-  ( Fun 
F  ->  F  =  ( x  e.  dom  F 
|->  ( F `  x
) ) )
4 funfvex 5606 . . . 4  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
54ralrimiva 2580 . . 3  |-  ( Fun 
F  ->  A. x  e.  dom  F ( F `
 x )  e. 
_V )
6 dfmptg 5772 . . 3  |-  ( A. x  e.  dom  F ( F `  x )  e.  _V  ->  (
x  e.  dom  F  |->  ( F `  x
) )  =  U_ x  e.  dom  F { <. x ,  ( F `
 x ) >. } )
75, 6syl 14 . 2  |-  ( Fun 
F  ->  ( x  e.  dom  F  |->  ( F `
 x ) )  =  U_ x  e. 
dom  F { <. x ,  ( F `  x ) >. } )
83, 7eqtrd 2239 1  |-  ( Fun 
F  ->  F  =  U_ x  e.  dom  F { <. x ,  ( F `  x )
>. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   A.wral 2485   _Vcvv 2773   {csn 3638   <.cop 3641   U_ciun 3933    |-> cmpt 4113   dom cdm 4683   Fun wfun 5274    Fn wfn 5275   ` cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator