ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funiun GIF version

Theorem funiun 5760
Description: A function is a union of singletons of ordered pairs indexed by its domain. (Contributed by AV, 18-Sep-2020.)
Assertion
Ref Expression
funiun (Fun 𝐹𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩})
Distinct variable group:   𝑥,𝐹

Proof of Theorem funiun
StepHypRef Expression
1 funfn 5300 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
2 dffn5im 5623 . . 3 (𝐹 Fn dom 𝐹𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)))
31, 2sylbi 121 . 2 (Fun 𝐹𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)))
4 funfvex 5592 . . . 4 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
54ralrimiva 2578 . . 3 (Fun 𝐹 → ∀𝑥 ∈ dom 𝐹(𝐹𝑥) ∈ V)
6 dfmptg 5758 . . 3 (∀𝑥 ∈ dom 𝐹(𝐹𝑥) ∈ V → (𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩})
75, 6syl 14 . 2 (Fun 𝐹 → (𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩})
83, 7eqtrd 2237 1 (Fun 𝐹𝐹 = 𝑥 ∈ dom 𝐹{⟨𝑥, (𝐹𝑥)⟩})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  wral 2483  Vcvv 2771  {csn 3632  cop 3635   ciun 3926  cmpt 4104  dom cdm 4674  Fun wfun 5264   Fn wfn 5265  cfv 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator