| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funiun | GIF version | ||
| Description: A function is a union of singletons of ordered pairs indexed by its domain. (Contributed by AV, 18-Sep-2020.) |
| Ref | Expression |
|---|---|
| funiun | ⊢ (Fun 𝐹 → 𝐹 = ∪ 𝑥 ∈ dom 𝐹{〈𝑥, (𝐹‘𝑥)〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 5310 | . . 3 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 2 | dffn5im 5637 | . . 3 ⊢ (𝐹 Fn dom 𝐹 → 𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥))) | |
| 3 | 1, 2 | sylbi 121 | . 2 ⊢ (Fun 𝐹 → 𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥))) |
| 4 | funfvex 5606 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
| 5 | 4 | ralrimiva 2580 | . . 3 ⊢ (Fun 𝐹 → ∀𝑥 ∈ dom 𝐹(𝐹‘𝑥) ∈ V) |
| 6 | dfmptg 5772 | . . 3 ⊢ (∀𝑥 ∈ dom 𝐹(𝐹‘𝑥) ∈ V → (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) = ∪ 𝑥 ∈ dom 𝐹{〈𝑥, (𝐹‘𝑥)〉}) | |
| 7 | 5, 6 | syl 14 | . 2 ⊢ (Fun 𝐹 → (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) = ∪ 𝑥 ∈ dom 𝐹{〈𝑥, (𝐹‘𝑥)〉}) |
| 8 | 3, 7 | eqtrd 2239 | 1 ⊢ (Fun 𝐹 → 𝐹 = ∪ 𝑥 ∈ dom 𝐹{〈𝑥, (𝐹‘𝑥)〉}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∀wral 2485 Vcvv 2773 {csn 3638 〈cop 3641 ∪ ciun 3933 ↦ cmpt 4113 dom cdm 4683 Fun wfun 5274 Fn wfn 5275 ‘cfv 5280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |