ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptelrn Unicode version

Theorem fvmptelrn 5633
Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
fvmptelrn.1  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> C )
Assertion
Ref Expression
fvmptelrn  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem fvmptelrn
StepHypRef Expression
1 fvmptelrn.1 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> C )
2 eqid 2164 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
32fmpt 5630 . . 3  |-  ( A. x  e.  A  B  e.  C  <->  ( x  e.  A  |->  B ) : A --> C )
41, 3sylibr 133 . 2  |-  ( ph  ->  A. x  e.  A  B  e.  C )
54r19.21bi 2552 1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2135   A.wral 2442    |-> cmpt 4038   -->wf 5179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2724  df-sbc 2948  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-br 3978  df-opab 4039  df-mpt 4040  df-id 4266  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-fv 5191
This theorem is referenced by:  txcnp  12838  cnmpt1t  12852  cnmpt12  12854  dvmptclx  13247
  Copyright terms: Public domain W3C validator