ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpti Unicode version

Theorem fmpti 5787
Description: Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
fmpt.1  |-  F  =  ( x  e.  A  |->  C )
fmpti.2  |-  ( x  e.  A  ->  C  e.  B )
Assertion
Ref Expression
fmpti  |-  F : A
--> B
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    C( x)    F( x)

Proof of Theorem fmpti
StepHypRef Expression
1 fmpti.2 . . 3  |-  ( x  e.  A  ->  C  e.  B )
21rgen 2583 . 2  |-  A. x  e.  A  C  e.  B
3 fmpt.1 . . 3  |-  F  =  ( x  e.  A  |->  C )
43fmpt 5785 . 2  |-  ( A. x  e.  A  C  e.  B  <->  F : A --> B )
52, 4mpbi 145 1  |-  F : A
--> B
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   A.wral 2508    |-> cmpt 4145   -->wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326
This theorem is referenced by:  omp1eomlem  7261  fnn0nninf  10660  cjf  11358  ref  11366  imf  11367  absf  11621  eff  12174  sinf  12215  cosf  12216  bitsf  12457  fnum  12712  fden  12713  divcnap  15239  dveflem  15400  2lgslem1b  15768  nnsf  16371  nninfself  16379
  Copyright terms: Public domain W3C validator