ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpti Unicode version

Theorem fmpti 5634
Description: Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
fmpt.1  |-  F  =  ( x  e.  A  |->  C )
fmpti.2  |-  ( x  e.  A  ->  C  e.  B )
Assertion
Ref Expression
fmpti  |-  F : A
--> B
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    C( x)    F( x)

Proof of Theorem fmpti
StepHypRef Expression
1 fmpti.2 . . 3  |-  ( x  e.  A  ->  C  e.  B )
21rgen 2517 . 2  |-  A. x  e.  A  C  e.  B
3 fmpt.1 . . 3  |-  F  =  ( x  e.  A  |->  C )
43fmpt 5632 . 2  |-  ( A. x  e.  A  C  e.  B  <->  F : A --> B )
52, 4mpbi 144 1  |-  F : A
--> B
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1342    e. wcel 2135   A.wral 2442    |-> cmpt 4040   -->wf 5181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4097  ax-pow 4150  ax-pr 4184
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2726  df-sbc 2950  df-un 3118  df-in 3120  df-ss 3127  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-br 3980  df-opab 4041  df-mpt 4042  df-id 4268  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-rn 4612  df-res 4613  df-ima 4614  df-iota 5150  df-fun 5187  df-fn 5188  df-f 5189  df-fv 5193
This theorem is referenced by:  omp1eomlem  7053  fnn0nninf  10366  cjf  10783  ref  10791  imf  10792  absf  11046  eff  11598  sinf  11639  cosf  11640  fnum  12116  fden  12117  divcnap  13153  dveflem  13285  nnsf  13778  nninfself  13786
  Copyright terms: Public domain W3C validator