ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfv Unicode version

Theorem eqfnfv 5558
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
eqfnfv  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
Distinct variable groups:    x, A    x, F    x, G

Proof of Theorem eqfnfv
StepHypRef Expression
1 dffn5im 5507 . . 3  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
2 dffn5im 5507 . . 3  |-  ( G  Fn  A  ->  G  =  ( x  e.  A  |->  ( G `  x ) ) )
31, 2eqeqan12d 2170 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <-> 
( x  e.  A  |->  ( F `  x
) )  =  ( x  e.  A  |->  ( G `  x ) ) ) )
4 funfvex 5478 . . . . . 6  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
54funfni 5263 . . . . 5  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  e.  _V )
65ralrimiva 2527 . . . 4  |-  ( F  Fn  A  ->  A. x  e.  A  ( F `  x )  e.  _V )
7 mpteqb 5551 . . . 4  |-  ( A. x  e.  A  ( F `  x )  e.  _V  ->  ( (
x  e.  A  |->  ( F `  x ) )  =  ( x  e.  A  |->  ( G `
 x ) )  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
86, 7syl 14 . . 3  |-  ( F  Fn  A  ->  (
( x  e.  A  |->  ( F `  x
) )  =  ( x  e.  A  |->  ( G `  x ) )  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
98adantr 274 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( ( x  e.  A  |->  ( F `  x ) )  =  ( x  e.  A  |->  ( G `  x
) )  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
103, 9bitrd 187 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 2125   A.wral 2432   _Vcvv 2709    |-> cmpt 4021    Fn wfn 5158   ` cfv 5163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-sbc 2934  df-csb 3028  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-iota 5128  df-fun 5165  df-fn 5166  df-fv 5171
This theorem is referenced by:  eqfnfv2  5559  eqfnfvd  5561  eqfnfv2f  5562  fvreseq  5564  fneqeql  5568  fconst2g  5675  cocan1  5728  cocan2  5729  tfri3  6304  updjud  7012  ser0f  10392  prodf1f  11417  cnmpt11  12630  cnmpt21  12638
  Copyright terms: Public domain W3C validator