Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqfnfv | Unicode version |
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
eqfnfv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5im 5532 | . . 3 | |
2 | dffn5im 5532 | . . 3 | |
3 | 1, 2 | eqeqan12d 2181 | . 2 |
4 | funfvex 5503 | . . . . . 6 | |
5 | 4 | funfni 5288 | . . . . 5 |
6 | 5 | ralrimiva 2539 | . . . 4 |
7 | mpteqb 5576 | . . . 4 | |
8 | 6, 7 | syl 14 | . . 3 |
9 | 8 | adantr 274 | . 2 |
10 | 3, 9 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 cvv 2726 cmpt 4043 wfn 5183 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: eqfnfv2 5584 eqfnfvd 5586 eqfnfv2f 5587 fvreseq 5589 fneqeql 5593 fconst2g 5700 cocan1 5755 cocan2 5756 tfri3 6335 updjud 7047 ser0f 10450 prodf1f 11484 1arithlem4 12296 1arith 12297 cnmpt11 12923 cnmpt21 12931 |
Copyright terms: Public domain | W3C validator |