Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqfnfv | Unicode version |
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
eqfnfv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5im 5542 | . . 3 | |
2 | dffn5im 5542 | . . 3 | |
3 | 1, 2 | eqeqan12d 2186 | . 2 |
4 | funfvex 5513 | . . . . . 6 | |
5 | 4 | funfni 5298 | . . . . 5 |
6 | 5 | ralrimiva 2543 | . . . 4 |
7 | mpteqb 5586 | . . . 4 | |
8 | 6, 7 | syl 14 | . . 3 |
9 | 8 | adantr 274 | . 2 |
10 | 3, 9 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 cvv 2730 cmpt 4050 wfn 5193 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 |
This theorem is referenced by: eqfnfv2 5594 eqfnfvd 5596 eqfnfv2f 5597 fvreseq 5599 fnmptfvd 5600 fneqeql 5604 fconst2g 5711 cocan1 5766 cocan2 5767 tfri3 6346 updjud 7059 nninfwlporlemd 7148 ser0f 10471 prodf1f 11506 1arithlem4 12318 1arith 12319 isgrpinv 12756 cnmpt11 13077 cnmpt21 13085 |
Copyright terms: Public domain | W3C validator |