| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqfnfv | Unicode version | ||
| Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| eqfnfv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn5im 5679 |
. . 3
| |
| 2 | dffn5im 5679 |
. . 3
| |
| 3 | 1, 2 | eqeqan12d 2245 |
. 2
|
| 4 | funfvex 5644 |
. . . . . 6
| |
| 5 | 4 | funfni 5423 |
. . . . 5
|
| 6 | 5 | ralrimiva 2603 |
. . . 4
|
| 7 | mpteqb 5725 |
. . . 4
| |
| 8 | 6, 7 | syl 14 |
. . 3
|
| 9 | 8 | adantr 276 |
. 2
|
| 10 | 3, 9 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 |
| This theorem is referenced by: eqfnfv2 5733 eqfnfvd 5735 eqfnfv2f 5736 fvreseq 5738 fnmptfvd 5739 fneqeql 5743 fconst2g 5854 cocan1 5911 cocan2 5912 tfri3 6513 updjud 7249 nninfwlporlemd 7339 ser0f 10756 prodf1f 12054 1arithlem4 12889 1arith 12890 isgrpinv 13587 cnmpt11 14957 cnmpt21 14965 nnnninfex 16388 nninfnfiinf 16389 |
| Copyright terms: Public domain | W3C validator |