ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfv Unicode version

Theorem eqfnfv 5526
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
eqfnfv  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
Distinct variable groups:    x, A    x, F    x, G

Proof of Theorem eqfnfv
StepHypRef Expression
1 dffn5im 5475 . . 3  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
2 dffn5im 5475 . . 3  |-  ( G  Fn  A  ->  G  =  ( x  e.  A  |->  ( G `  x ) ) )
31, 2eqeqan12d 2156 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <-> 
( x  e.  A  |->  ( F `  x
) )  =  ( x  e.  A  |->  ( G `  x ) ) ) )
4 funfvex 5446 . . . . . 6  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
54funfni 5231 . . . . 5  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  e.  _V )
65ralrimiva 2508 . . . 4  |-  ( F  Fn  A  ->  A. x  e.  A  ( F `  x )  e.  _V )
7 mpteqb 5519 . . . 4  |-  ( A. x  e.  A  ( F `  x )  e.  _V  ->  ( (
x  e.  A  |->  ( F `  x ) )  =  ( x  e.  A  |->  ( G `
 x ) )  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
86, 7syl 14 . . 3  |-  ( F  Fn  A  ->  (
( x  e.  A  |->  ( F `  x
) )  =  ( x  e.  A  |->  ( G `  x ) )  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
98adantr 274 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( ( x  e.  A  |->  ( F `  x ) )  =  ( x  e.  A  |->  ( G `  x
) )  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
103, 9bitrd 187 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   A.wral 2417   _Vcvv 2689    |-> cmpt 3997    Fn wfn 5126   ` cfv 5131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fn 5134  df-fv 5139
This theorem is referenced by:  eqfnfv2  5527  eqfnfvd  5529  eqfnfv2f  5530  fvreseq  5532  fneqeql  5536  fconst2g  5643  cocan1  5696  cocan2  5697  tfri3  6272  updjud  6975  ser0f  10319  prodf1f  11344  cnmpt11  12491  cnmpt21  12499
  Copyright terms: Public domain W3C validator