| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqfnfv | Unicode version | ||
| Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| eqfnfv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn5im 5626 |
. . 3
| |
| 2 | dffn5im 5626 |
. . 3
| |
| 3 | 1, 2 | eqeqan12d 2221 |
. 2
|
| 4 | funfvex 5595 |
. . . . . 6
| |
| 5 | 4 | funfni 5377 |
. . . . 5
|
| 6 | 5 | ralrimiva 2579 |
. . . 4
|
| 7 | mpteqb 5672 |
. . . 4
| |
| 8 | 6, 7 | syl 14 |
. . 3
|
| 9 | 8 | adantr 276 |
. 2
|
| 10 | 3, 9 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fn 5275 df-fv 5280 |
| This theorem is referenced by: eqfnfv2 5680 eqfnfvd 5682 eqfnfv2f 5683 fvreseq 5685 fnmptfvd 5686 fneqeql 5690 fconst2g 5801 cocan1 5858 cocan2 5859 tfri3 6455 updjud 7186 nninfwlporlemd 7276 ser0f 10681 prodf1f 11887 1arithlem4 12722 1arith 12723 isgrpinv 13419 cnmpt11 14788 cnmpt21 14796 nnnninfex 15996 nninfnfiinf 15997 |
| Copyright terms: Public domain | W3C validator |