ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfv Unicode version

Theorem eqfnfv 5613
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
eqfnfv  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
Distinct variable groups:    x, A    x, F    x, G

Proof of Theorem eqfnfv
StepHypRef Expression
1 dffn5im 5561 . . 3  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
2 dffn5im 5561 . . 3  |-  ( G  Fn  A  ->  G  =  ( x  e.  A  |->  ( G `  x ) ) )
31, 2eqeqan12d 2193 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <-> 
( x  e.  A  |->  ( F `  x
) )  =  ( x  e.  A  |->  ( G `  x ) ) ) )
4 funfvex 5532 . . . . . 6  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
54funfni 5316 . . . . 5  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  e.  _V )
65ralrimiva 2550 . . . 4  |-  ( F  Fn  A  ->  A. x  e.  A  ( F `  x )  e.  _V )
7 mpteqb 5606 . . . 4  |-  ( A. x  e.  A  ( F `  x )  e.  _V  ->  ( (
x  e.  A  |->  ( F `  x ) )  =  ( x  e.  A  |->  ( G `
 x ) )  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
86, 7syl 14 . . 3  |-  ( F  Fn  A  ->  (
( x  e.  A  |->  ( F `  x
) )  =  ( x  e.  A  |->  ( G `  x ) )  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
98adantr 276 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( ( x  e.  A  |->  ( F `  x ) )  =  ( x  e.  A  |->  ( G `  x
) )  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
103, 9bitrd 188 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2737    |-> cmpt 4064    Fn wfn 5211   ` cfv 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fn 5219  df-fv 5224
This theorem is referenced by:  eqfnfv2  5614  eqfnfvd  5616  eqfnfv2f  5617  fvreseq  5619  fnmptfvd  5620  fneqeql  5624  fconst2g  5731  cocan1  5787  cocan2  5788  tfri3  6367  updjud  7080  nninfwlporlemd  7169  ser0f  10512  prodf1f  11546  1arithlem4  12358  1arith  12359  isgrpinv  12880  cnmpt11  13676  cnmpt21  13684
  Copyright terms: Public domain W3C validator