Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqfnfv | Unicode version |
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
eqfnfv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5im 5507 | . . 3 | |
2 | dffn5im 5507 | . . 3 | |
3 | 1, 2 | eqeqan12d 2170 | . 2 |
4 | funfvex 5478 | . . . . . 6 | |
5 | 4 | funfni 5263 | . . . . 5 |
6 | 5 | ralrimiva 2527 | . . . 4 |
7 | mpteqb 5551 | . . . 4 | |
8 | 6, 7 | syl 14 | . . 3 |
9 | 8 | adantr 274 | . 2 |
10 | 3, 9 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1332 wcel 2125 wral 2432 cvv 2709 cmpt 4021 wfn 5158 cfv 5163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-sbc 2934 df-csb 3028 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-iota 5128 df-fun 5165 df-fn 5166 df-fv 5171 |
This theorem is referenced by: eqfnfv2 5559 eqfnfvd 5561 eqfnfv2f 5562 fvreseq 5564 fneqeql 5568 fconst2g 5675 cocan1 5728 cocan2 5729 tfri3 6304 updjud 7012 ser0f 10392 prodf1f 11417 cnmpt11 12630 cnmpt21 12638 |
Copyright terms: Public domain | W3C validator |