| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fveq1i | Unicode version | ||
| Description: Equality inference for function value. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| fveq1i.1 |
|
| Ref | Expression |
|---|---|
| fveq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1i.1 |
. 2
| |
| 2 | fveq1 5626 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 |
| This theorem is referenced by: fveq12i 5633 fvun2 5701 fvopab3ig 5708 fvsnun1 5836 fvsnun2 5837 fvpr1 5843 fvpr2 5844 fvpr1g 5845 fvpr2g 5846 fvtp1g 5847 fvtp2g 5848 fvtp3g 5849 fvtp2 5851 fvtp3 5852 ov 6124 ovigg 6125 ovg 6144 tfr2a 6467 tfrex 6514 frec0g 6543 freccllem 6548 frecsuclem 6552 caseinl 7258 caseinr 7259 ctssdccl 7278 addpiord 7503 mulpiord 7504 fseq1p1m1 10290 frec2uz0d 10621 frec2uzzd 10622 frec2uzsucd 10623 frecuzrdgrrn 10630 frec2uzrdg 10631 frecuzrdg0 10635 frecuzrdgsuc 10636 frecuzrdgg 10638 frecuzrdg0t 10644 frecuzrdgsuctlem 10645 0tonninf 10662 1tonninf 10663 inftonninf 10664 seq3val 10682 seqvalcd 10683 hashinfom 11000 hashennn 11002 hashfz1 11005 ccat1st1st 11172 cats1fvd 11298 shftidt 11344 resqrexlemf1 11519 resqrexlemfp1 11520 cbvsum 11871 fisumss 11903 fsumadd 11917 isumclim3 11934 cbvprod 12069 fprodssdc 12101 nninfctlemfo 12561 ialgr0 12566 algrp1 12568 ennnfonelem0 12976 ennnfonelemp1 12977 ennnfonelemom 12979 ctinfomlemom 12998 nninfdclemp1 13021 ndxarg 13055 strslfv2d 13075 prdsidlem 13480 prdsinvlem 13641 ringidvalg 13924 lidlvalg 14435 rspvalg 14436 znf1o 14615 mplnegfi 14669 upxp 14946 cnmetdval 15203 remetdval 15221 reeflog 15537 ushgredgedg 16024 ushgredgedgloop 16026 wlk1walkdom 16070 nninfnfiinf 16389 |
| Copyright terms: Public domain | W3C validator |