![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fveq1i | Unicode version |
Description: Equality inference for function value. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
fveq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
fveq1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | fveq1 5526 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-rex 2471 df-uni 3822 df-br 4016 df-iota 5190 df-fv 5236 |
This theorem is referenced by: fveq12i 5533 fvun2 5596 fvopab3ig 5603 fvsnun1 5726 fvsnun2 5727 fvpr1 5733 fvpr2 5734 fvpr1g 5735 fvpr2g 5736 fvtp1g 5737 fvtp2g 5738 fvtp3g 5739 fvtp2 5741 fvtp3 5742 ov 6007 ovigg 6008 ovg 6026 tfr2a 6335 tfrex 6382 frec0g 6411 freccllem 6416 frecsuclem 6420 caseinl 7103 caseinr 7104 ctssdccl 7123 addpiord 7328 mulpiord 7329 fseq1p1m1 10107 frec2uz0d 10412 frec2uzzd 10413 frec2uzsucd 10414 frecuzrdgrrn 10421 frec2uzrdg 10422 frecuzrdg0 10426 frecuzrdgsuc 10427 frecuzrdgg 10429 frecuzrdg0t 10435 frecuzrdgsuctlem 10436 0tonninf 10452 1tonninf 10453 inftonninf 10454 seq3val 10471 seqvalcd 10472 hashinfom 10771 hashennn 10773 hashfz1 10776 shftidt 10855 resqrexlemf1 11030 resqrexlemfp1 11031 cbvsum 11381 fisumss 11413 fsumadd 11427 isumclim3 11444 cbvprod 11579 fprodssdc 11611 ialgr0 12057 algrp1 12059 ennnfonelem0 12419 ennnfonelemp1 12420 ennnfonelemom 12422 ctinfomlemom 12441 nninfdclemp1 12464 ndxarg 12498 strslfv2d 12518 ringidvalg 13208 lidlvalg 13655 rspvalg 13656 upxp 14043 cnmetdval 14300 remetdval 14310 reeflog 14555 |
Copyright terms: Public domain | W3C validator |