| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvconst2g | Unicode version | ||
| Description: The value of a constant function. (Contributed by NM, 20-Aug-2005.) |
| Ref | Expression |
|---|---|
| fvconst2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 5521 |
. 2
| |
| 2 | fvconst 5826 |
. 2
| |
| 3 | 1, 2 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 |
| This theorem is referenced by: fconst2g 5853 fvconst2 5854 ofc1g 6238 ofc2g 6239 caofid0l 6243 caofid0r 6244 caofid1 6245 caofid2 6246 ser0 10750 exp3vallem 10757 exp3val 10758 exp1 10762 expp1 10763 resqrexlem1arp 11511 resqrexlemf1 11514 climconst2 11797 climaddc1 11835 climmulc2 11837 climsubc1 11838 climsubc2 11839 climlec2 11847 prodf1 12048 prod0 12091 ialgrlemconst 12560 ialgr0 12561 algrf 12562 algrp1 12563 pwsbas 13320 pwsplusgval 13323 pwsmulrval 13324 0mhm 13514 pwsinvg 13640 mulgval 13654 mulgfng 13656 mulgnngsum 13659 mulg1 13661 mulgnnp1 13662 mulgnnsubcl 13666 mulgnn0z 13681 mulgnndir 13683 mplsubgfilemm 14656 lmconst 14884 cnconst2 14901 dvidlemap 15359 dvidrelem 15360 dvidsslem 15361 dvconst 15362 dvconstre 15364 dvconstss 15366 dvef 15395 |
| Copyright terms: Public domain | W3C validator |