![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvconst2g | Unicode version |
Description: The value of a constant function. (Contributed by NM, 20-Aug-2005.) |
Ref | Expression |
---|---|
fvconst2g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstg 5451 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | fvconst 5747 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylan 283 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 |
This theorem is referenced by: fconst2g 5774 fvconst2 5775 ofc1g 6153 ofc2g 6154 ser0 10607 exp3vallem 10614 exp3val 10615 exp1 10619 expp1 10620 resqrexlem1arp 11152 resqrexlemf1 11155 climconst2 11437 climaddc1 11475 climmulc2 11477 climsubc1 11478 climsubc2 11479 climlec2 11487 prodf1 11688 prod0 11731 ialgrlemconst 12184 ialgr0 12185 algrf 12186 algrp1 12187 0mhm 13061 mulgval 13195 mulgfng 13197 mulgnngsum 13200 mulg1 13202 mulgnnp1 13203 mulgnnsubcl 13207 mulgnn0z 13222 mulgnndir 13224 lmconst 14395 cnconst2 14412 dvidlemap 14870 dvidrelem 14871 dvidsslem 14872 dvconst 14873 dvconstre 14875 dvconstss 14877 dvef 14906 |
Copyright terms: Public domain | W3C validator |