ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvconst2g Unicode version

Theorem fvconst2g 5732
Description: The value of a constant function. (Contributed by NM, 20-Aug-2005.)
Assertion
Ref Expression
fvconst2g  |-  ( ( B  e.  D  /\  C  e.  A )  ->  ( ( A  X.  { B } ) `  C )  =  B )

Proof of Theorem fvconst2g
StepHypRef Expression
1 fconstg 5414 . 2  |-  ( B  e.  D  ->  ( A  X.  { B }
) : A --> { B } )
2 fvconst 5706 . 2  |-  ( ( ( A  X.  { B } ) : A --> { B }  /\  C  e.  A )  ->  (
( A  X.  { B } ) `  C
)  =  B )
31, 2sylan 283 1  |-  ( ( B  e.  D  /\  C  e.  A )  ->  ( ( A  X.  { B } ) `  C )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   {csn 3594    X. cxp 4626   -->wf 5214   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226
This theorem is referenced by:  fconst2g  5733  fvconst2  5734  ser0  10516  exp3vallem  10523  exp3val  10524  exp1  10528  expp1  10529  resqrexlem1arp  11016  resqrexlemf1  11019  climconst2  11301  climaddc1  11339  climmulc2  11341  climsubc1  11342  climsubc2  11343  climlec2  11351  prodf1  11552  prod0  11595  ialgrlemconst  12045  ialgr0  12046  algrf  12047  algrp1  12048  0mhm  12878  mulgval  12991  mulgfng  12992  mulg1  12995  mulgnnp1  12996  mulgnnsubcl  13000  mulgnn0z  13015  mulgnndir  13017  lmconst  13801  cnconst2  13818  dvidlemap  14245  dvconst  14246  dvef  14273
  Copyright terms: Public domain W3C validator