| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fvconst2g | Unicode version | ||
| Description: The value of a constant function. (Contributed by NM, 20-Aug-2005.) | 
| Ref | Expression | 
|---|---|
| fvconst2g | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fconstg 5454 | 
. 2
 | |
| 2 | fvconst 5750 | 
. 2
 | |
| 3 | 1, 2 | sylan 283 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 | 
| This theorem is referenced by: fconst2g 5777 fvconst2 5778 ofc1g 6156 ofc2g 6157 ser0 10625 exp3vallem 10632 exp3val 10633 exp1 10637 expp1 10638 resqrexlem1arp 11170 resqrexlemf1 11173 climconst2 11456 climaddc1 11494 climmulc2 11496 climsubc1 11497 climsubc2 11498 climlec2 11506 prodf1 11707 prod0 11750 ialgrlemconst 12211 ialgr0 12212 algrf 12213 algrp1 12214 0mhm 13118 mulgval 13252 mulgfng 13254 mulgnngsum 13257 mulg1 13259 mulgnnp1 13260 mulgnnsubcl 13264 mulgnn0z 13279 mulgnndir 13281 lmconst 14452 cnconst2 14469 dvidlemap 14927 dvidrelem 14928 dvidsslem 14929 dvconst 14930 dvconstre 14932 dvconstss 14934 dvef 14963 | 
| Copyright terms: Public domain | W3C validator |