ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvconst2g Unicode version

Theorem fvconst2g 5525
Description: The value of a constant function. (Contributed by NM, 20-Aug-2005.)
Assertion
Ref Expression
fvconst2g  |-  ( ( B  e.  D  /\  C  e.  A )  ->  ( ( A  X.  { B } ) `  C )  =  B )

Proof of Theorem fvconst2g
StepHypRef Expression
1 fconstg 5220 . 2  |-  ( B  e.  D  ->  ( A  X.  { B }
) : A --> { B } )
2 fvconst 5499 . 2  |-  ( ( ( A  X.  { B } ) : A --> { B }  /\  C  e.  A )  ->  (
( A  X.  { B } ) `  C
)  =  B )
31, 2sylan 278 1  |-  ( ( B  e.  D  /\  C  e.  A )  ->  ( ( A  X.  { B } ) `  C )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290    e. wcel 1439   {csn 3450    X. cxp 4449   -->wf 5024   ` cfv 5028
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-sbc 2842  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-fv 5036
This theorem is referenced by:  fconst2g  5526  fvconst2  5527  iser0  10001  ser0  10003  exp3vallem  10010  exp3val  10011  exp1  10015  expp1  10016  resqrexlem1arp  10492  resqrexlemf1  10495  climconst2  10733  climaddc1  10771  climmulc2  10773  climsubc1  10774  climsubc2  10775  climlec2  10784  ialgrlemconst  11357  ialgr0  11358  algrf  11359  algrp1  11360
  Copyright terms: Public domain W3C validator