ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ideq Unicode version

Theorem ideq 4735
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.)
Hypothesis
Ref Expression
ideq.1  |-  B  e. 
_V
Assertion
Ref Expression
ideq  |-  ( A  _I  B  <->  A  =  B )

Proof of Theorem ideq
StepHypRef Expression
1 ideq.1 . 2  |-  B  e. 
_V
2 ideqg 4734 . 2  |-  ( B  e.  _V  ->  ( A  _I  B  <->  A  =  B ) )
31, 2ax-mp 5 1  |-  ( A  _I  B  <->  A  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1335    e. wcel 2128   _Vcvv 2712   class class class wbr 3965    _I cid 4247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-id 4252  df-xp 4589  df-rel 4590
This theorem is referenced by:  dmi  4798  resieq  4873  resiexg  4908  iss  4909  imai  4939  issref  4965  intasym  4967  asymref  4968  intirr  4969  poirr2  4975  cnvi  4987  coi1  5098  idssen  6715
  Copyright terms: Public domain W3C validator