ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeocld Unicode version

Theorem hmeocld 14986
Description: Homeomorphisms preserve closedness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1  |-  X  = 
U. J
Assertion
Ref Expression
hmeocld  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( A  e.  ( Clsd `  J )  <->  ( F " A )  e.  (
Clsd `  K )
) )

Proof of Theorem hmeocld
StepHypRef Expression
1 hmeocnvcn 14980 . . . 4  |-  ( F  e.  ( J Homeo K )  ->  `' F  e.  ( K  Cn  J
) )
21adantr 276 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  `' F  e.  ( K  Cn  J ) )
3 imacnvcnv 5193 . . . . 5  |-  ( `' `' F " A )  =  ( F " A )
4 cnclima 14897 . . . . 5  |-  ( ( `' F  e.  ( K  Cn  J )  /\  A  e.  ( Clsd `  J ) )  -> 
( `' `' F " A )  e.  (
Clsd `  K )
)
53, 4eqeltrrid 2317 . . . 4  |-  ( ( `' F  e.  ( K  Cn  J )  /\  A  e.  ( Clsd `  J ) )  -> 
( F " A
)  e.  ( Clsd `  K ) )
65ex 115 . . 3  |-  ( `' F  e.  ( K  Cn  J )  -> 
( A  e.  (
Clsd `  J )  ->  ( F " A
)  e.  ( Clsd `  K ) ) )
72, 6syl 14 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( A  e.  ( Clsd `  J )  ->  ( F " A )  e.  ( Clsd `  K
) ) )
8 hmeocn 14979 . . . . 5  |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K
) )
98adantr 276 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  F  e.  ( J  Cn  K
) )
10 cnclima 14897 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  ( F " A )  e.  ( Clsd `  K
) )  ->  ( `' F " ( F
" A ) )  e.  ( Clsd `  J
) )
1110ex 115 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  (
( F " A
)  e.  ( Clsd `  K )  ->  ( `' F " ( F
" A ) )  e.  ( Clsd `  J
) ) )
129, 11syl 14 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( F " A
)  e.  ( Clsd `  K )  ->  ( `' F " ( F
" A ) )  e.  ( Clsd `  J
) ) )
13 hmeoopn.1 . . . . . . 7  |-  X  = 
U. J
14 eqid 2229 . . . . . . 7  |-  U. K  =  U. K
1513, 14hmeof1o 14983 . . . . . 6  |-  ( F  e.  ( J Homeo K )  ->  F : X
-1-1-onto-> U. K )
16 f1of1 5571 . . . . . 6  |-  ( F : X -1-1-onto-> U. K  ->  F : X -1-1-> U. K )
1715, 16syl 14 . . . . 5  |-  ( F  e.  ( J Homeo K )  ->  F : X -1-1-> U. K )
18 f1imacnv 5589 . . . . 5  |-  ( ( F : X -1-1-> U. K  /\  A  C_  X
)  ->  ( `' F " ( F " A ) )  =  A )
1917, 18sylan 283 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( `' F " ( F
" A ) )  =  A )
2019eleq1d 2298 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( `' F "
( F " A
) )  e.  (
Clsd `  J )  <->  A  e.  ( Clsd `  J
) ) )
2112, 20sylibd 149 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( F " A
)  e.  ( Clsd `  K )  ->  A  e.  ( Clsd `  J
) ) )
227, 21impbid 129 1  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( A  e.  ( Clsd `  J )  <->  ( F " A )  e.  (
Clsd `  K )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    C_ wss 3197   U.cuni 3888   `'ccnv 4718   "cima 4722   -1-1->wf1 5315   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001   Clsdccld 14766    Cn ccn 14859   Homeochmeo 14974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-top 14672  df-topon 14685  df-cld 14769  df-cn 14862  df-hmeo 14975
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator