ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeocld Unicode version

Theorem hmeocld 14817
Description: Homeomorphisms preserve closedness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1  |-  X  = 
U. J
Assertion
Ref Expression
hmeocld  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( A  e.  ( Clsd `  J )  <->  ( F " A )  e.  (
Clsd `  K )
) )

Proof of Theorem hmeocld
StepHypRef Expression
1 hmeocnvcn 14811 . . . 4  |-  ( F  e.  ( J Homeo K )  ->  `' F  e.  ( K  Cn  J
) )
21adantr 276 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  `' F  e.  ( K  Cn  J ) )
3 imacnvcnv 5148 . . . . 5  |-  ( `' `' F " A )  =  ( F " A )
4 cnclima 14728 . . . . 5  |-  ( ( `' F  e.  ( K  Cn  J )  /\  A  e.  ( Clsd `  J ) )  -> 
( `' `' F " A )  e.  (
Clsd `  K )
)
53, 4eqeltrrid 2293 . . . 4  |-  ( ( `' F  e.  ( K  Cn  J )  /\  A  e.  ( Clsd `  J ) )  -> 
( F " A
)  e.  ( Clsd `  K ) )
65ex 115 . . 3  |-  ( `' F  e.  ( K  Cn  J )  -> 
( A  e.  (
Clsd `  J )  ->  ( F " A
)  e.  ( Clsd `  K ) ) )
72, 6syl 14 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( A  e.  ( Clsd `  J )  ->  ( F " A )  e.  ( Clsd `  K
) ) )
8 hmeocn 14810 . . . . 5  |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K
) )
98adantr 276 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  F  e.  ( J  Cn  K
) )
10 cnclima 14728 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  ( F " A )  e.  ( Clsd `  K
) )  ->  ( `' F " ( F
" A ) )  e.  ( Clsd `  J
) )
1110ex 115 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  (
( F " A
)  e.  ( Clsd `  K )  ->  ( `' F " ( F
" A ) )  e.  ( Clsd `  J
) ) )
129, 11syl 14 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( F " A
)  e.  ( Clsd `  K )  ->  ( `' F " ( F
" A ) )  e.  ( Clsd `  J
) ) )
13 hmeoopn.1 . . . . . . 7  |-  X  = 
U. J
14 eqid 2205 . . . . . . 7  |-  U. K  =  U. K
1513, 14hmeof1o 14814 . . . . . 6  |-  ( F  e.  ( J Homeo K )  ->  F : X
-1-1-onto-> U. K )
16 f1of1 5523 . . . . . 6  |-  ( F : X -1-1-onto-> U. K  ->  F : X -1-1-> U. K )
1715, 16syl 14 . . . . 5  |-  ( F  e.  ( J Homeo K )  ->  F : X -1-1-> U. K )
18 f1imacnv 5541 . . . . 5  |-  ( ( F : X -1-1-> U. K  /\  A  C_  X
)  ->  ( `' F " ( F " A ) )  =  A )
1917, 18sylan 283 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( `' F " ( F
" A ) )  =  A )
2019eleq1d 2274 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( `' F "
( F " A
) )  e.  (
Clsd `  J )  <->  A  e.  ( Clsd `  J
) ) )
2112, 20sylibd 149 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( F " A
)  e.  ( Clsd `  K )  ->  A  e.  ( Clsd `  J
) ) )
227, 21impbid 129 1  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( A  e.  ( Clsd `  J )  <->  ( F " A )  e.  (
Clsd `  K )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176    C_ wss 3166   U.cuni 3850   `'ccnv 4675   "cima 4679   -1-1->wf1 5269   -1-1-onto->wf1o 5271   ` cfv 5272  (class class class)co 5946   Clsdccld 14597    Cn ccn 14690   Homeochmeo 14805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-map 6739  df-top 14503  df-topon 14516  df-cld 14600  df-cn 14693  df-hmeo 14806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator