ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeocld Unicode version

Theorem hmeocld 14209
Description: Homeomorphisms preserve closedness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1  |-  X  = 
U. J
Assertion
Ref Expression
hmeocld  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( A  e.  ( Clsd `  J )  <->  ( F " A )  e.  (
Clsd `  K )
) )

Proof of Theorem hmeocld
StepHypRef Expression
1 hmeocnvcn 14203 . . . 4  |-  ( F  e.  ( J Homeo K )  ->  `' F  e.  ( K  Cn  J
) )
21adantr 276 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  `' F  e.  ( K  Cn  J ) )
3 imacnvcnv 5108 . . . . 5  |-  ( `' `' F " A )  =  ( F " A )
4 cnclima 14120 . . . . 5  |-  ( ( `' F  e.  ( K  Cn  J )  /\  A  e.  ( Clsd `  J ) )  -> 
( `' `' F " A )  e.  (
Clsd `  K )
)
53, 4eqeltrrid 2277 . . . 4  |-  ( ( `' F  e.  ( K  Cn  J )  /\  A  e.  ( Clsd `  J ) )  -> 
( F " A
)  e.  ( Clsd `  K ) )
65ex 115 . . 3  |-  ( `' F  e.  ( K  Cn  J )  -> 
( A  e.  (
Clsd `  J )  ->  ( F " A
)  e.  ( Clsd `  K ) ) )
72, 6syl 14 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( A  e.  ( Clsd `  J )  ->  ( F " A )  e.  ( Clsd `  K
) ) )
8 hmeocn 14202 . . . . 5  |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K
) )
98adantr 276 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  F  e.  ( J  Cn  K
) )
10 cnclima 14120 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  ( F " A )  e.  ( Clsd `  K
) )  ->  ( `' F " ( F
" A ) )  e.  ( Clsd `  J
) )
1110ex 115 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  (
( F " A
)  e.  ( Clsd `  K )  ->  ( `' F " ( F
" A ) )  e.  ( Clsd `  J
) ) )
129, 11syl 14 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( F " A
)  e.  ( Clsd `  K )  ->  ( `' F " ( F
" A ) )  e.  ( Clsd `  J
) ) )
13 hmeoopn.1 . . . . . . 7  |-  X  = 
U. J
14 eqid 2189 . . . . . . 7  |-  U. K  =  U. K
1513, 14hmeof1o 14206 . . . . . 6  |-  ( F  e.  ( J Homeo K )  ->  F : X
-1-1-onto-> U. K )
16 f1of1 5475 . . . . . 6  |-  ( F : X -1-1-onto-> U. K  ->  F : X -1-1-> U. K )
1715, 16syl 14 . . . . 5  |-  ( F  e.  ( J Homeo K )  ->  F : X -1-1-> U. K )
18 f1imacnv 5493 . . . . 5  |-  ( ( F : X -1-1-> U. K  /\  A  C_  X
)  ->  ( `' F " ( F " A ) )  =  A )
1917, 18sylan 283 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( `' F " ( F
" A ) )  =  A )
2019eleq1d 2258 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( `' F "
( F " A
) )  e.  (
Clsd `  J )  <->  A  e.  ( Clsd `  J
) ) )
2112, 20sylibd 149 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( F " A
)  e.  ( Clsd `  K )  ->  A  e.  ( Clsd `  J
) ) )
227, 21impbid 129 1  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( A  e.  ( Clsd `  J )  <->  ( F " A )  e.  (
Clsd `  K )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160    C_ wss 3144   U.cuni 3824   `'ccnv 4640   "cima 4644   -1-1->wf1 5228   -1-1-onto->wf1o 5230   ` cfv 5231  (class class class)co 5891   Clsdccld 13989    Cn ccn 14082   Homeochmeo 14197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-map 6668  df-top 13895  df-topon 13908  df-cld 13992  df-cn 14085  df-hmeo 14198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator