ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnex Unicode version

Theorem rnex 4700
Description: The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 7-Jul-2008.)
Hypothesis
Ref Expression
dmex.1  |-  A  e. 
_V
Assertion
Ref Expression
rnex  |-  ran  A  e.  _V

Proof of Theorem rnex
StepHypRef Expression
1 dmex.1 . 2  |-  A  e. 
_V
2 rnexg 4698 . 2  |-  ( A  e.  _V  ->  ran  A  e.  _V )
31, 2ax-mp 7 1  |-  ran  A  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 1438   _Vcvv 2619   ran crn 4439
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-cnv 4446  df-dm 4448  df-rn 4449
This theorem is referenced by:  ffoss  5285  abrexex  5888  fo2nd  5929  tfrexlem  6099  bren  6462  xpassen  6544  mapen  6560  ssenen  6565  iseqex  9852  hashfacen  10237  shftfval  10251
  Copyright terms: Public domain W3C validator