ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralxp Unicode version

Theorem ralxp 4806
Description: Universal quantification restricted to a cross product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
ralxp.1  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
ralxp  |-  ( A. x  e.  ( A  X.  B ) ph  <->  A. y  e.  A  A. z  e.  B  ps )
Distinct variable groups:    x, y, z, A    x, B, z    ph, y, z    ps, x    y, B
Allowed substitution hints:    ph( x)    ps( y,
z)

Proof of Theorem ralxp
StepHypRef Expression
1 iunxpconst 4720 . . 3  |-  U_ y  e.  A  ( {
y }  X.  B
)  =  ( A  X.  B )
21raleqi 2694 . 2  |-  ( A. x  e.  U_  y  e.  A  ( { y }  X.  B )
ph 
<-> 
A. x  e.  ( A  X.  B )
ph )
3 ralxp.1 . . 3  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
43raliunxp 4804 . 2  |-  ( A. x  e.  U_  y  e.  A  ( { y }  X.  B )
ph 
<-> 
A. y  e.  A  A. z  e.  B  ps )
52, 4bitr3i 186 1  |-  ( A. x  e.  ( A  X.  B ) ph  <->  A. y  e.  A  A. z  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   A.wral 2472   {csn 3619   <.cop 3622   U_ciun 3913    X. cxp 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-iun 3915  df-opab 4092  df-xp 4666  df-rel 4667
This theorem is referenced by:  ralxpf  4809  issref  5049  ffnov  6023  eqfnov  6026  funimassov  6070  f1stres  6214  f2ndres  6215  ecopover  6689  ecopoverg  6692  xpf1o  6902  imasaddfnlemg  12900  srgfcl  13472  txbas  14437  cnmpt21  14470  txmetcnp  14697  txmetcn  14698  qtopbasss  14700
  Copyright terms: Public domain W3C validator