| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralxp | Unicode version | ||
| Description: Universal quantification restricted to a cross product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| ralxp.1 |
|
| Ref | Expression |
|---|---|
| ralxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxpconst 4736 |
. . 3
| |
| 2 | 1 | raleqi 2706 |
. 2
|
| 3 | ralxp.1 |
. . 3
| |
| 4 | 3 | raliunxp 4820 |
. 2
|
| 5 | 2, 4 | bitr3i 186 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-iun 3929 df-opab 4107 df-xp 4682 df-rel 4683 |
| This theorem is referenced by: ralxpf 4825 issref 5066 ffnov 6051 eqfnov 6054 funimassov 6098 f1stres 6247 f2ndres 6248 ecopover 6722 ecopoverg 6725 xpf1o 6943 imasaddfnlemg 13179 srgfcl 13768 txbas 14763 cnmpt21 14796 txmetcnp 15023 txmetcn 15024 qtopbasss 15026 mpodvdsmulf1o 15495 fsumdvdsmul 15496 |
| Copyright terms: Public domain | W3C validator |