| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralxp | Unicode version | ||
| Description: Universal quantification restricted to a cross product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| ralxp.1 |
|
| Ref | Expression |
|---|---|
| ralxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxpconst 4753 |
. . 3
| |
| 2 | 1 | raleqi 2709 |
. 2
|
| 3 | ralxp.1 |
. . 3
| |
| 4 | 3 | raliunxp 4837 |
. 2
|
| 5 | 2, 4 | bitr3i 186 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-iun 3943 df-opab 4122 df-xp 4699 df-rel 4700 |
| This theorem is referenced by: ralxpf 4842 issref 5084 ffnov 6072 eqfnov 6075 funimassov 6119 f1stres 6268 f2ndres 6269 ecopover 6743 ecopoverg 6746 xpf1o 6966 imasaddfnlemg 13261 srgfcl 13850 txbas 14845 cnmpt21 14878 txmetcnp 15105 txmetcn 15106 qtopbasss 15108 mpodvdsmulf1o 15577 fsumdvdsmul 15578 |
| Copyright terms: Public domain | W3C validator |