ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralxp Unicode version

Theorem ralxp 4772
Description: Universal quantification restricted to a cross product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
ralxp.1  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
ralxp  |-  ( A. x  e.  ( A  X.  B ) ph  <->  A. y  e.  A  A. z  e.  B  ps )
Distinct variable groups:    x, y, z, A    x, B, z    ph, y, z    ps, x    y, B
Allowed substitution hints:    ph( x)    ps( y,
z)

Proof of Theorem ralxp
StepHypRef Expression
1 iunxpconst 4688 . . 3  |-  U_ y  e.  A  ( {
y }  X.  B
)  =  ( A  X.  B )
21raleqi 2677 . 2  |-  ( A. x  e.  U_  y  e.  A  ( { y }  X.  B )
ph 
<-> 
A. x  e.  ( A  X.  B )
ph )
3 ralxp.1 . . 3  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
43raliunxp 4770 . 2  |-  ( A. x  e.  U_  y  e.  A  ( { y }  X.  B )
ph 
<-> 
A. y  e.  A  A. z  e.  B  ps )
52, 4bitr3i 186 1  |-  ( A. x  e.  ( A  X.  B ) ph  <->  A. y  e.  A  A. z  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353   A.wral 2455   {csn 3594   <.cop 3597   U_ciun 3888    X. cxp 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-iun 3890  df-opab 4067  df-xp 4634  df-rel 4635
This theorem is referenced by:  ralxpf  4775  issref  5013  ffnov  5982  eqfnov  5984  funimassov  6027  f1stres  6163  f2ndres  6164  ecopover  6636  ecopoverg  6639  xpf1o  6847  imasaddfnlemg  12741  srgfcl  13194  txbas  13946  cnmpt21  13979  txmetcnp  14206  txmetcn  14207  qtopbasss  14209
  Copyright terms: Public domain W3C validator