| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralxp | Unicode version | ||
| Description: Universal quantification restricted to a cross product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| ralxp.1 |
|
| Ref | Expression |
|---|---|
| ralxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxpconst 4779 |
. . 3
| |
| 2 | 1 | raleqi 2732 |
. 2
|
| 3 | ralxp.1 |
. . 3
| |
| 4 | 3 | raliunxp 4863 |
. 2
|
| 5 | 2, 4 | bitr3i 186 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-iun 3967 df-opab 4146 df-xp 4725 df-rel 4726 |
| This theorem is referenced by: ralxpf 4868 issref 5111 ffnov 6108 eqfnov 6111 funimassov 6155 f1stres 6305 f2ndres 6306 ecopover 6780 ecopoverg 6783 xpf1o 7005 imasaddfnlemg 13347 srgfcl 13936 txbas 14932 cnmpt21 14965 txmetcnp 15192 txmetcn 15193 qtopbasss 15195 mpodvdsmulf1o 15664 fsumdvdsmul 15665 |
| Copyright terms: Public domain | W3C validator |