| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralxp | Unicode version | ||
| Description: Universal quantification restricted to a cross product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| ralxp.1 |
|
| Ref | Expression |
|---|---|
| ralxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxpconst 4724 |
. . 3
| |
| 2 | 1 | raleqi 2697 |
. 2
|
| 3 | ralxp.1 |
. . 3
| |
| 4 | 3 | raliunxp 4808 |
. 2
|
| 5 | 2, 4 | bitr3i 186 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-iun 3919 df-opab 4096 df-xp 4670 df-rel 4671 |
| This theorem is referenced by: ralxpf 4813 issref 5053 ffnov 6030 eqfnov 6033 funimassov 6077 f1stres 6226 f2ndres 6227 ecopover 6701 ecopoverg 6704 xpf1o 6914 imasaddfnlemg 13016 srgfcl 13605 txbas 14578 cnmpt21 14611 txmetcnp 14838 txmetcn 14839 qtopbasss 14841 mpodvdsmulf1o 15310 fsumdvdsmul 15311 |
| Copyright terms: Public domain | W3C validator |