ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralxp Unicode version

Theorem ralxp 4640
Description: Universal quantification restricted to a cross product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
ralxp.1  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
ralxp  |-  ( A. x  e.  ( A  X.  B ) ph  <->  A. y  e.  A  A. z  e.  B  ps )
Distinct variable groups:    x, y, z, A    x, B, z    ph, y, z    ps, x    y, B
Allowed substitution hints:    ph( x)    ps( y,
z)

Proof of Theorem ralxp
StepHypRef Expression
1 iunxpconst 4557 . . 3  |-  U_ y  e.  A  ( {
y }  X.  B
)  =  ( A  X.  B )
21raleqi 2602 . 2  |-  ( A. x  e.  U_  y  e.  A  ( { y }  X.  B )
ph 
<-> 
A. x  e.  ( A  X.  B )
ph )
3 ralxp.1 . . 3  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
43raliunxp 4638 . 2  |-  ( A. x  e.  U_  y  e.  A  ( { y }  X.  B )
ph 
<-> 
A. y  e.  A  A. z  e.  B  ps )
52, 4bitr3i 185 1  |-  ( A. x  e.  ( A  X.  B ) ph  <->  A. y  e.  A  A. z  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1312   A.wral 2388   {csn 3491   <.cop 3494   U_ciun 3777    X. cxp 4495
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-sbc 2877  df-csb 2970  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-iun 3779  df-opab 3948  df-xp 4503  df-rel 4504
This theorem is referenced by:  ralxpf  4643  issref  4877  ffnov  5827  eqfnov  5829  funimassov  5872  f1stres  6009  f2ndres  6010  ecopover  6479  ecopoverg  6482  xpf1o  6689  txbas  12263  cnmpt21  12296  txmetcnp  12501  txmetcn  12502  qtopbasss  12504
  Copyright terms: Public domain W3C validator