ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lbcl Unicode version

Theorem lbcl 8862
Description: If a set of reals contains a lower bound, it contains a unique lower bound that belongs to the set. (Contributed by NM, 9-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
lbcl  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  S
)
Distinct variable group:    x, y, S

Proof of Theorem lbcl
StepHypRef Expression
1 lbreu 8861 . 2  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  E! x  e.  S  A. y  e.  S  x  <_  y )
2 riotacl 5823 . 2  |-  ( E! x  e.  S  A. y  e.  S  x  <_  y  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  S )
31, 2syl 14 1  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141   A.wral 2448   E.wrex 2449   E!wreu 2450    C_ wss 3121   class class class wbr 3989   iota_crio 5808   RRcr 7773    <_ cle 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltirr 7886  ax-pre-apti 7889
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-iota 5160  df-riota 5809  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960
This theorem is referenced by:  lbinf  8864  lbinfcl  8865
  Copyright terms: Public domain W3C validator