ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lbcl Unicode version

Theorem lbcl 8990
Description: If a set of reals contains a lower bound, it contains a unique lower bound that belongs to the set. (Contributed by NM, 9-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
lbcl  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  S
)
Distinct variable group:    x, y, S

Proof of Theorem lbcl
StepHypRef Expression
1 lbreu 8989 . 2  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  E! x  e.  S  A. y  e.  S  x  <_  y )
2 riotacl 5895 . 2  |-  ( E! x  e.  S  A. y  e.  S  x  <_  y  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  S )
31, 2syl 14 1  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   A.wral 2475   E.wrex 2476   E!wreu 2477    C_ wss 3157   class class class wbr 4034   iota_crio 5879   RRcr 7895    <_ cle 8079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-pre-ltirr 8008  ax-pre-apti 8011
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-iota 5220  df-riota 5880  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084
This theorem is referenced by:  lbinf  8992  lbinfcl  8993
  Copyright terms: Public domain W3C validator