ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lbinf Unicode version

Theorem lbinf 9021
Description: If a set of reals contains a lower bound, the lower bound is its infimum. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.)
Assertion
Ref Expression
lbinf  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  -> inf ( S ,  RR ,  <  )  =  ( iota_ x  e.  S  A. y  e.  S  x  <_  y
) )
Distinct variable group:    x, S, y

Proof of Theorem lbinf
Dummy variables  f  g  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 8152 . . 3  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
21adantl 277 . 2  |-  ( ( ( S  C_  RR  /\ 
E. x  e.  S  A. y  e.  S  x  <_  y )  /\  ( f  e.  RR  /\  g  e.  RR ) )  ->  ( f  =  g  <->  ( -.  f  <  g  /\  -.  g  <  f ) ) )
3 lbcl 9019 . . 3  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  S
)
4 ssel 3187 . . . 4  |-  ( S 
C_  RR  ->  ( (
iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  S  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  RR ) )
54adantr 276 . . 3  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  (
( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  S  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  RR ) )
63, 5mpd 13 . 2  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  RR )
76adantr 276 . . 3  |-  ( ( ( S  C_  RR  /\ 
E. x  e.  S  A. y  e.  S  x  <_  y )  /\  z  e.  S )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  RR )
8 ssel2 3188 . . . 4  |-  ( ( S  C_  RR  /\  z  e.  S )  ->  z  e.  RR )
98adantlr 477 . . 3  |-  ( ( ( S  C_  RR  /\ 
E. x  e.  S  A. y  e.  S  x  <_  y )  /\  z  e.  S )  ->  z  e.  RR )
10 lble 9020 . . . 4  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y  /\  z  e.  S )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_  z
)
11103expa 1206 . . 3  |-  ( ( ( S  C_  RR  /\ 
E. x  e.  S  A. y  e.  S  x  <_  y )  /\  z  e.  S )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_ 
z )
127, 9, 11lensymd 8194 . 2  |-  ( ( ( S  C_  RR  /\ 
E. x  e.  S  A. y  e.  S  x  <_  y )  /\  z  e.  S )  ->  -.  z  <  ( iota_ x  e.  S  A. y  e.  S  x  <_  y ) )
132, 6, 3, 12infminti 7129 1  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  -> inf ( S ,  RR ,  <  )  =  ( iota_ x  e.  S  A. y  e.  S  x  <_  y
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485    C_ wss 3166   class class class wbr 4044   iota_crio 5898  infcinf 7085   RRcr 7924    < clt 8107    <_ cle 8108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-pre-ltirr 8037  ax-pre-apti 8040
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-cnv 4683  df-iota 5232  df-riota 5899  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113
This theorem is referenced by:  lbinfcl  9022  lbinfle  9023
  Copyright terms: Public domain W3C validator