ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lbinf Unicode version

Theorem lbinf 9020
Description: If a set of reals contains a lower bound, the lower bound is its infimum. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.)
Assertion
Ref Expression
lbinf  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  -> inf ( S ,  RR ,  <  )  =  ( iota_ x  e.  S  A. y  e.  S  x  <_  y
) )
Distinct variable group:    x, S, y

Proof of Theorem lbinf
Dummy variables  f  g  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 8151 . . 3  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
21adantl 277 . 2  |-  ( ( ( S  C_  RR  /\ 
E. x  e.  S  A. y  e.  S  x  <_  y )  /\  ( f  e.  RR  /\  g  e.  RR ) )  ->  ( f  =  g  <->  ( -.  f  <  g  /\  -.  g  <  f ) ) )
3 lbcl 9018 . . 3  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  S
)
4 ssel 3186 . . . 4  |-  ( S 
C_  RR  ->  ( (
iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  S  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  RR ) )
54adantr 276 . . 3  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  (
( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  S  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  RR ) )
63, 5mpd 13 . 2  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  RR )
76adantr 276 . . 3  |-  ( ( ( S  C_  RR  /\ 
E. x  e.  S  A. y  e.  S  x  <_  y )  /\  z  e.  S )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  RR )
8 ssel2 3187 . . . 4  |-  ( ( S  C_  RR  /\  z  e.  S )  ->  z  e.  RR )
98adantlr 477 . . 3  |-  ( ( ( S  C_  RR  /\ 
E. x  e.  S  A. y  e.  S  x  <_  y )  /\  z  e.  S )  ->  z  e.  RR )
10 lble 9019 . . . 4  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y  /\  z  e.  S )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_  z
)
11103expa 1205 . . 3  |-  ( ( ( S  C_  RR  /\ 
E. x  e.  S  A. y  e.  S  x  <_  y )  /\  z  e.  S )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_ 
z )
127, 9, 11lensymd 8193 . 2  |-  ( ( ( S  C_  RR  /\ 
E. x  e.  S  A. y  e.  S  x  <_  y )  /\  z  e.  S )  ->  -.  z  <  ( iota_ x  e.  S  A. y  e.  S  x  <_  y ) )
132, 6, 3, 12infminti 7128 1  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  -> inf ( S ,  RR ,  <  )  =  ( iota_ x  e.  S  A. y  e.  S  x  <_  y
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   A.wral 2483   E.wrex 2484    C_ wss 3165   class class class wbr 4043   iota_crio 5897  infcinf 7084   RRcr 7923    < clt 8106    <_ cle 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-pre-ltirr 8036  ax-pre-apti 8039
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4680  df-cnv 4682  df-iota 5231  df-riota 5898  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112
This theorem is referenced by:  lbinfcl  9021  lbinfle  9022
  Copyright terms: Public domain W3C validator