ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lfgredg2dom Unicode version

Theorem lfgredg2dom 15808
Description: An edge of a loop-free graph has at least two ends. (Contributed by AV, 23-Feb-2021.)
Hypotheses
Ref Expression
lfuhgrnloopv.i  |-  I  =  (iEdg `  G )
lfuhgrnloopv.a  |-  A  =  dom  I
lfuhgrnloopv.e  |-  E  =  { x  e.  ~P V  |  2o  ~<_  x }
Assertion
Ref Expression
lfgredg2dom  |-  ( ( I : A --> E  /\  X  e.  A )  ->  2o  ~<_  ( I `  X ) )
Distinct variable groups:    x, A    x, I    x, V
Allowed substitution hints:    E( x)    G( x)    X( x)

Proof of Theorem lfgredg2dom
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . . . 5  |-  A  =  A
2 lfuhgrnloopv.e . . . . 5  |-  E  =  { x  e.  ~P V  |  2o  ~<_  x }
31, 2feq23i 5435 . . . 4  |-  ( I : A --> E  <->  I : A
--> { x  e.  ~P V  |  2o  ~<_  x }
)
43biimpi 120 . . 3  |-  ( I : A --> E  ->  I : A --> { x  e.  ~P V  |  2o  ~<_  x } )
54ffvelcdmda 5733 . 2  |-  ( ( I : A --> E  /\  X  e.  A )  ->  ( I `  X
)  e.  { x  e.  ~P V  |  2o  ~<_  x } )
6 breq2 4058 . . . 4  |-  ( y  =  ( I `  X )  ->  ( 2o 
~<_  y  <->  2o  ~<_  ( I `  X ) ) )
7 breq2 4058 . . . . 5  |-  ( x  =  y  ->  ( 2o 
~<_  x  <->  2o  ~<_  y )
)
87cbvrabv 2772 . . . 4  |-  { x  e.  ~P V  |  2o  ~<_  x }  =  {
y  e.  ~P V  |  2o  ~<_  y }
96, 8elrab2 2936 . . 3  |-  ( ( I `  X )  e.  { x  e. 
~P V  |  2o  ~<_  x }  <->  ( ( I `
 X )  e. 
~P V  /\  2o  ~<_  ( I `  X
) ) )
109simprbi 275 . 2  |-  ( ( I `  X )  e.  { x  e. 
~P V  |  2o  ~<_  x }  ->  2o  ~<_  ( I `
 X ) )
115, 10syl 14 1  |-  ( ( I : A --> E  /\  X  e.  A )  ->  2o  ~<_  ( I `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   {crab 2489   ~Pcpw 3621   class class class wbr 4054   dom cdm 4688   -->wf 5281   ` cfv 5285   2oc2o 6514    ~<_ cdom 6844  iEdgciedg 15697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293
This theorem is referenced by:  lfgrnloopen  15809
  Copyright terms: Public domain W3C validator