ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lfgredg2dom Unicode version

Theorem lfgredg2dom 15924
Description: An edge of a loop-free graph has at least two ends. (Contributed by AV, 23-Feb-2021.)
Hypotheses
Ref Expression
lfuhgrnloopv.i  |-  I  =  (iEdg `  G )
lfuhgrnloopv.a  |-  A  =  dom  I
lfuhgrnloopv.e  |-  E  =  { x  e.  ~P V  |  2o  ~<_  x }
Assertion
Ref Expression
lfgredg2dom  |-  ( ( I : A --> E  /\  X  e.  A )  ->  2o  ~<_  ( I `  X ) )
Distinct variable groups:    x, A    x, I    x, V
Allowed substitution hints:    E( x)    G( x)    X( x)

Proof of Theorem lfgredg2dom
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . . 5  |-  A  =  A
2 lfuhgrnloopv.e . . . . 5  |-  E  =  { x  e.  ~P V  |  2o  ~<_  x }
31, 2feq23i 5467 . . . 4  |-  ( I : A --> E  <->  I : A
--> { x  e.  ~P V  |  2o  ~<_  x }
)
43biimpi 120 . . 3  |-  ( I : A --> E  ->  I : A --> { x  e.  ~P V  |  2o  ~<_  x } )
54ffvelcdmda 5769 . 2  |-  ( ( I : A --> E  /\  X  e.  A )  ->  ( I `  X
)  e.  { x  e.  ~P V  |  2o  ~<_  x } )
6 breq2 4086 . . . 4  |-  ( y  =  ( I `  X )  ->  ( 2o 
~<_  y  <->  2o  ~<_  ( I `  X ) ) )
7 breq2 4086 . . . . 5  |-  ( x  =  y  ->  ( 2o 
~<_  x  <->  2o  ~<_  y )
)
87cbvrabv 2798 . . . 4  |-  { x  e.  ~P V  |  2o  ~<_  x }  =  {
y  e.  ~P V  |  2o  ~<_  y }
96, 8elrab2 2962 . . 3  |-  ( ( I `  X )  e.  { x  e. 
~P V  |  2o  ~<_  x }  <->  ( ( I `
 X )  e. 
~P V  /\  2o  ~<_  ( I `  X
) ) )
109simprbi 275 . 2  |-  ( ( I `  X )  e.  { x  e. 
~P V  |  2o  ~<_  x }  ->  2o  ~<_  ( I `
 X ) )
115, 10syl 14 1  |-  ( ( I : A --> E  /\  X  e.  A )  ->  2o  ~<_  ( I `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   {crab 2512   ~Pcpw 3649   class class class wbr 4082   dom cdm 4718   -->wf 5313   ` cfv 5317   2oc2o 6554    ~<_ cdom 6884  iEdgciedg 15808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325
This theorem is referenced by:  lfgrnloopen  15925
  Copyright terms: Public domain W3C validator