ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  umgrislfupgrdom Unicode version

Theorem umgrislfupgrdom 15923
Description: A multigraph is a loop-free pseudograph. (Contributed by AV, 27-Jan-2021.)
Hypotheses
Ref Expression
umgrislfupgr.v  |-  V  =  (Vtx `  G )
umgrislfupgr.i  |-  I  =  (iEdg `  G )
Assertion
Ref Expression
umgrislfupgrdom  |-  ( G  e. UMGraph 
<->  ( G  e. UPGraph  /\  I : dom  I --> { x  e.  ~P V  |  2o  ~<_  x } ) )
Distinct variable groups:    x, G    x, V
Allowed substitution hint:    I( x)

Proof of Theorem umgrislfupgrdom
StepHypRef Expression
1 umgrupgr 15906 . . 3  |-  ( G  e. UMGraph  ->  G  e. UPGraph )
2 umgrislfupgr.v . . . . 5  |-  V  =  (Vtx `  G )
3 umgrislfupgr.i . . . . 5  |-  I  =  (iEdg `  G )
42, 3umgrfen 15901 . . . 4  |-  ( G  e. UMGraph  ->  I : dom  I
--> { x  e.  ~P V  |  x  ~~  2o } )
5 id 19 . . . . 5  |-  ( I : dom  I --> { x  e.  ~P V  |  x 
~~  2o }  ->  I : dom  I --> { x  e.  ~P V  |  x 
~~  2o } )
6 ensymb 6930 . . . . . . . . 9  |-  ( 2o 
~~  x  <->  x  ~~  2o )
7 endom 6912 . . . . . . . . 9  |-  ( 2o 
~~  x  ->  2o  ~<_  x )
86, 7sylbir 135 . . . . . . . 8  |-  ( x 
~~  2o  ->  2o  ~<_  x )
98a1i 9 . . . . . . 7  |-  ( x  e.  ~P V  -> 
( x  ~~  2o  ->  2o  ~<_  x ) )
109ss2rabi 3306 . . . . . 6  |-  { x  e.  ~P V  |  x 
~~  2o }  C_  { x  e.  ~P V  |  2o  ~<_  x }
1110a1i 9 . . . . 5  |-  ( I : dom  I --> { x  e.  ~P V  |  x 
~~  2o }  ->  { x  e.  ~P V  |  x  ~~  2o }  C_ 
{ x  e.  ~P V  |  2o  ~<_  x }
)
125, 11fssd 5485 . . . 4  |-  ( I : dom  I --> { x  e.  ~P V  |  x 
~~  2o }  ->  I : dom  I --> { x  e.  ~P V  |  2o  ~<_  x } )
134, 12syl 14 . . 3  |-  ( G  e. UMGraph  ->  I : dom  I
--> { x  e.  ~P V  |  2o  ~<_  x }
)
141, 13jca 306 . 2  |-  ( G  e. UMGraph  ->  ( G  e. UPGraph  /\  I : dom  I --> { x  e.  ~P V  |  2o  ~<_  x }
) )
152, 3upgrfen 15891 . . . 4  |-  ( G  e. UPGraph  ->  I : dom  I
--> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) } )
16 fin 5511 . . . . 5  |-  ( I : dom  I --> ( { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  i^i  { x  e.  ~P V  |  2o  ~<_  x } )  <->  ( I : dom  I --> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  /\  I : dom  I
--> { x  e.  ~P V  |  2o  ~<_  x }
) )
17 umgrislfupgrenlem 15922 . . . . . 6  |-  ( { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  i^i  { x  e.  ~P V  |  2o  ~<_  x } )  =  {
x  e.  ~P V  |  x  ~~  2o }
18 feq3 5457 . . . . . 6  |-  ( ( { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  i^i  {
x  e.  ~P V  |  2o  ~<_  x }
)  =  { x  e.  ~P V  |  x 
~~  2o }  ->  ( I : dom  I --> ( { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  i^i  {
x  e.  ~P V  |  2o  ~<_  x }
)  <->  I : dom  I
--> { x  e.  ~P V  |  x  ~~  2o } ) )
1917, 18ax-mp 5 . . . . 5  |-  ( I : dom  I --> ( { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  i^i  { x  e.  ~P V  |  2o  ~<_  x } )  <->  I : dom  I --> { x  e. 
~P V  |  x 
~~  2o } )
2016, 19sylbb1 137 . . . 4  |-  ( ( I : dom  I --> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  /\  I : dom  I --> { x  e.  ~P V  |  2o  ~<_  x } )  ->  I : dom  I --> { x  e.  ~P V  |  x 
~~  2o } )
2115, 20sylan 283 . . 3  |-  ( ( G  e. UPGraph  /\  I : dom  I --> { x  e.  ~P V  |  2o  ~<_  x } )  ->  I : dom  I --> { x  e.  ~P V  |  x 
~~  2o } )
222, 3isumgren 15899 . . . 4  |-  ( G  e. UPGraph  ->  ( G  e. UMGraph  <->  I : dom  I --> { x  e.  ~P V  |  x 
~~  2o } ) )
2322adantr 276 . . 3  |-  ( ( G  e. UPGraph  /\  I : dom  I --> { x  e.  ~P V  |  2o  ~<_  x } )  ->  ( G  e. UMGraph  <->  I : dom  I
--> { x  e.  ~P V  |  x  ~~  2o } ) )
2421, 23mpbird 167 . 2  |-  ( ( G  e. UPGraph  /\  I : dom  I --> { x  e.  ~P V  |  2o  ~<_  x } )  ->  G  e. UMGraph )
2514, 24impbii 126 1  |-  ( G  e. UMGraph 
<->  ( G  e. UPGraph  /\  I : dom  I --> { x  e.  ~P V  |  2o  ~<_  x } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   {crab 2512    i^i cin 3196    C_ wss 3197   ~Pcpw 3649   class class class wbr 4082   dom cdm 4718   -->wf 5313   ` cfv 5317   1oc1o 6553   2oc2o 6554    ~~ cen 6883    ~<_ cdom 6884  Vtxcvtx 15807  iEdgciedg 15808  UPGraphcupgr 15885  UMGraphcumgr 15886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-1o 6560  df-2o 6561  df-er 6678  df-en 6886  df-dom 6887  df-sub 8315  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-dec 9575  df-ndx 13030  df-slot 13031  df-base 13033  df-edgf 15800  df-vtx 15809  df-iedg 15810  df-upgren 15887  df-umgren 15888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator