ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  umgrislfupgrdom Unicode version

Theorem umgrislfupgrdom 15807
Description: A multigraph is a loop-free pseudograph. (Contributed by AV, 27-Jan-2021.)
Hypotheses
Ref Expression
umgrislfupgr.v  |-  V  =  (Vtx `  G )
umgrislfupgr.i  |-  I  =  (iEdg `  G )
Assertion
Ref Expression
umgrislfupgrdom  |-  ( G  e. UMGraph 
<->  ( G  e. UPGraph  /\  I : dom  I --> { x  e.  ~P V  |  2o  ~<_  x } ) )
Distinct variable groups:    x, G    x, V
Allowed substitution hint:    I( x)

Proof of Theorem umgrislfupgrdom
StepHypRef Expression
1 umgrupgr 15793 . . 3  |-  ( G  e. UMGraph  ->  G  e. UPGraph )
2 umgrislfupgr.v . . . . 5  |-  V  =  (Vtx `  G )
3 umgrislfupgr.i . . . . 5  |-  I  =  (iEdg `  G )
42, 3umgrfen 15788 . . . 4  |-  ( G  e. UMGraph  ->  I : dom  I
--> { x  e.  ~P V  |  x  ~~  2o } )
5 id 19 . . . . 5  |-  ( I : dom  I --> { x  e.  ~P V  |  x 
~~  2o }  ->  I : dom  I --> { x  e.  ~P V  |  x 
~~  2o } )
6 ensymb 6890 . . . . . . . . 9  |-  ( 2o 
~~  x  <->  x  ~~  2o )
7 endom 6872 . . . . . . . . 9  |-  ( 2o 
~~  x  ->  2o  ~<_  x )
86, 7sylbir 135 . . . . . . . 8  |-  ( x 
~~  2o  ->  2o  ~<_  x )
98a1i 9 . . . . . . 7  |-  ( x  e.  ~P V  -> 
( x  ~~  2o  ->  2o  ~<_  x ) )
109ss2rabi 3279 . . . . . 6  |-  { x  e.  ~P V  |  x 
~~  2o }  C_  { x  e.  ~P V  |  2o  ~<_  x }
1110a1i 9 . . . . 5  |-  ( I : dom  I --> { x  e.  ~P V  |  x 
~~  2o }  ->  { x  e.  ~P V  |  x  ~~  2o }  C_ 
{ x  e.  ~P V  |  2o  ~<_  x }
)
125, 11fssd 5453 . . . 4  |-  ( I : dom  I --> { x  e.  ~P V  |  x 
~~  2o }  ->  I : dom  I --> { x  e.  ~P V  |  2o  ~<_  x } )
134, 12syl 14 . . 3  |-  ( G  e. UMGraph  ->  I : dom  I
--> { x  e.  ~P V  |  2o  ~<_  x }
)
141, 13jca 306 . 2  |-  ( G  e. UMGraph  ->  ( G  e. UPGraph  /\  I : dom  I --> { x  e.  ~P V  |  2o  ~<_  x }
) )
152, 3upgrfen 15778 . . . 4  |-  ( G  e. UPGraph  ->  I : dom  I
--> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) } )
16 fin 5479 . . . . 5  |-  ( I : dom  I --> ( { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  i^i  { x  e.  ~P V  |  2o  ~<_  x } )  <->  ( I : dom  I --> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  /\  I : dom  I
--> { x  e.  ~P V  |  2o  ~<_  x }
) )
17 umgrislfupgrenlem 15806 . . . . . 6  |-  ( { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  i^i  { x  e.  ~P V  |  2o  ~<_  x } )  =  {
x  e.  ~P V  |  x  ~~  2o }
18 feq3 5425 . . . . . 6  |-  ( ( { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  i^i  {
x  e.  ~P V  |  2o  ~<_  x }
)  =  { x  e.  ~P V  |  x 
~~  2o }  ->  ( I : dom  I --> ( { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  i^i  {
x  e.  ~P V  |  2o  ~<_  x }
)  <->  I : dom  I
--> { x  e.  ~P V  |  x  ~~  2o } ) )
1917, 18ax-mp 5 . . . . 5  |-  ( I : dom  I --> ( { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  i^i  { x  e.  ~P V  |  2o  ~<_  x } )  <->  I : dom  I --> { x  e. 
~P V  |  x 
~~  2o } )
2016, 19sylbb1 137 . . . 4  |-  ( ( I : dom  I --> { x  e.  ~P V  |  ( x  ~~  1o  \/  x  ~~  2o ) }  /\  I : dom  I --> { x  e.  ~P V  |  2o  ~<_  x } )  ->  I : dom  I --> { x  e.  ~P V  |  x 
~~  2o } )
2115, 20sylan 283 . . 3  |-  ( ( G  e. UPGraph  /\  I : dom  I --> { x  e.  ~P V  |  2o  ~<_  x } )  ->  I : dom  I --> { x  e.  ~P V  |  x 
~~  2o } )
222, 3isumgren 15786 . . . 4  |-  ( G  e. UPGraph  ->  ( G  e. UMGraph  <->  I : dom  I --> { x  e.  ~P V  |  x 
~~  2o } ) )
2322adantr 276 . . 3  |-  ( ( G  e. UPGraph  /\  I : dom  I --> { x  e.  ~P V  |  2o  ~<_  x } )  ->  ( G  e. UMGraph  <->  I : dom  I
--> { x  e.  ~P V  |  x  ~~  2o } ) )
2421, 23mpbird 167 . 2  |-  ( ( G  e. UPGraph  /\  I : dom  I --> { x  e.  ~P V  |  2o  ~<_  x } )  ->  G  e. UMGraph )
2514, 24impbii 126 1  |-  ( G  e. UMGraph 
<->  ( G  e. UPGraph  /\  I : dom  I --> { x  e.  ~P V  |  2o  ~<_  x } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2177   {crab 2489    i^i cin 3169    C_ wss 3170   ~Pcpw 3621   class class class wbr 4054   dom cdm 4688   -->wf 5281   ` cfv 5285   1oc1o 6513   2oc2o 6514    ~~ cen 6843    ~<_ cdom 6844  Vtxcvtx 15696  iEdgciedg 15697  UPGraphcupgr 15772  UMGraphcumgr 15773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-1o 6520  df-2o 6521  df-er 6638  df-en 6846  df-dom 6847  df-sub 8275  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-5 9128  df-6 9129  df-7 9130  df-8 9131  df-9 9132  df-n0 9326  df-dec 9535  df-ndx 12920  df-slot 12921  df-base 12923  df-edgf 15689  df-vtx 15698  df-iedg 15699  df-upgren 15774  df-umgren 15775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator