| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > umgrislfupgrdom | Unicode version | ||
| Description: A multigraph is a loop-free pseudograph. (Contributed by AV, 27-Jan-2021.) |
| Ref | Expression |
|---|---|
| umgrislfupgr.v |
|
| umgrislfupgr.i |
|
| Ref | Expression |
|---|---|
| umgrislfupgrdom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrupgr 15906 |
. . 3
| |
| 2 | umgrislfupgr.v |
. . . . 5
| |
| 3 | umgrislfupgr.i |
. . . . 5
| |
| 4 | 2, 3 | umgrfen 15901 |
. . . 4
|
| 5 | id 19 |
. . . . 5
| |
| 6 | ensymb 6930 |
. . . . . . . . 9
| |
| 7 | endom 6912 |
. . . . . . . . 9
| |
| 8 | 6, 7 | sylbir 135 |
. . . . . . . 8
|
| 9 | 8 | a1i 9 |
. . . . . . 7
|
| 10 | 9 | ss2rabi 3306 |
. . . . . 6
|
| 11 | 10 | a1i 9 |
. . . . 5
|
| 12 | 5, 11 | fssd 5485 |
. . . 4
|
| 13 | 4, 12 | syl 14 |
. . 3
|
| 14 | 1, 13 | jca 306 |
. 2
|
| 15 | 2, 3 | upgrfen 15891 |
. . . 4
|
| 16 | fin 5511 |
. . . . 5
| |
| 17 | umgrislfupgrenlem 15922 |
. . . . . 6
| |
| 18 | feq3 5457 |
. . . . . 6
| |
| 19 | 17, 18 | ax-mp 5 |
. . . . 5
|
| 20 | 16, 19 | sylbb1 137 |
. . . 4
|
| 21 | 15, 20 | sylan 283 |
. . 3
|
| 22 | 2, 3 | isumgren 15899 |
. . . 4
|
| 23 | 22 | adantr 276 |
. . 3
|
| 24 | 21, 23 | mpbird 167 |
. 2
|
| 25 | 14, 24 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-1o 6560 df-2o 6561 df-er 6678 df-en 6886 df-dom 6887 df-sub 8315 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-dec 9575 df-ndx 13030 df-slot 13031 df-base 13033 df-edgf 15800 df-vtx 15809 df-iedg 15810 df-upgren 15887 df-umgren 15888 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |