ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lfgredg2dom GIF version

Theorem lfgredg2dom 15808
Description: An edge of a loop-free graph has at least two ends. (Contributed by AV, 23-Feb-2021.)
Hypotheses
Ref Expression
lfuhgrnloopv.i 𝐼 = (iEdg‘𝐺)
lfuhgrnloopv.a 𝐴 = dom 𝐼
lfuhgrnloopv.e 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥}
Assertion
Ref Expression
lfgredg2dom ((𝐼:𝐴𝐸𝑋𝐴) → 2o ≼ (𝐼𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐼   𝑥,𝑉
Allowed substitution hints:   𝐸(𝑥)   𝐺(𝑥)   𝑋(𝑥)

Proof of Theorem lfgredg2dom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . . . 5 𝐴 = 𝐴
2 lfuhgrnloopv.e . . . . 5 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥}
31, 2feq23i 5435 . . . 4 (𝐼:𝐴𝐸𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥})
43biimpi 120 . . 3 (𝐼:𝐴𝐸𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥})
54ffvelcdmda 5733 . 2 ((𝐼:𝐴𝐸𝑋𝐴) → (𝐼𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥})
6 breq2 4058 . . . 4 (𝑦 = (𝐼𝑋) → (2o𝑦 ↔ 2o ≼ (𝐼𝑋)))
7 breq2 4058 . . . . 5 (𝑥 = 𝑦 → (2o𝑥 ↔ 2o𝑦))
87cbvrabv 2772 . . . 4 {𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥} = {𝑦 ∈ 𝒫 𝑉 ∣ 2o𝑦}
96, 8elrab2 2936 . . 3 ((𝐼𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥} ↔ ((𝐼𝑋) ∈ 𝒫 𝑉 ∧ 2o ≼ (𝐼𝑋)))
109simprbi 275 . 2 ((𝐼𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥} → 2o ≼ (𝐼𝑋))
115, 10syl 14 1 ((𝐼:𝐴𝐸𝑋𝐴) → 2o ≼ (𝐼𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {crab 2489  𝒫 cpw 3621   class class class wbr 4054  dom cdm 4688  wf 5281  cfv 5285  2oc2o 6514  cdom 6844  iEdgciedg 15697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293
This theorem is referenced by:  lfgrnloopen  15809
  Copyright terms: Public domain W3C validator