| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lfgredg2dom | GIF version | ||
| Description: An edge of a loop-free graph has at least two ends. (Contributed by AV, 23-Feb-2021.) |
| Ref | Expression |
|---|---|
| lfuhgrnloopv.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| lfuhgrnloopv.a | ⊢ 𝐴 = dom 𝐼 |
| lfuhgrnloopv.e | ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥} |
| Ref | Expression |
|---|---|
| lfgredg2dom | ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑋 ∈ 𝐴) → 2o ≼ (𝐼‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . . . 5 ⊢ 𝐴 = 𝐴 | |
| 2 | lfuhgrnloopv.e | . . . . 5 ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥} | |
| 3 | 1, 2 | feq23i 5435 | . . . 4 ⊢ (𝐼:𝐴⟶𝐸 ↔ 𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) |
| 4 | 3 | biimpi 120 | . . 3 ⊢ (𝐼:𝐴⟶𝐸 → 𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) |
| 5 | 4 | ffvelcdmda 5733 | . 2 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑋 ∈ 𝐴) → (𝐼‘𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥}) |
| 6 | breq2 4058 | . . . 4 ⊢ (𝑦 = (𝐼‘𝑋) → (2o ≼ 𝑦 ↔ 2o ≼ (𝐼‘𝑋))) | |
| 7 | breq2 4058 | . . . . 5 ⊢ (𝑥 = 𝑦 → (2o ≼ 𝑥 ↔ 2o ≼ 𝑦)) | |
| 8 | 7 | cbvrabv 2772 | . . . 4 ⊢ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥} = {𝑦 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑦} |
| 9 | 6, 8 | elrab2 2936 | . . 3 ⊢ ((𝐼‘𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥} ↔ ((𝐼‘𝑋) ∈ 𝒫 𝑉 ∧ 2o ≼ (𝐼‘𝑋))) |
| 10 | 9 | simprbi 275 | . 2 ⊢ ((𝐼‘𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2o ≼ 𝑥} → 2o ≼ (𝐼‘𝑋)) |
| 11 | 5, 10 | syl 14 | 1 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑋 ∈ 𝐴) → 2o ≼ (𝐼‘𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {crab 2489 𝒫 cpw 3621 class class class wbr 4054 dom cdm 4688 ⟶wf 5281 ‘cfv 5285 2oc2o 6514 ≼ cdom 6844 iEdgciedg 15697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-fv 5293 |
| This theorem is referenced by: lfgrnloopen 15809 |
| Copyright terms: Public domain | W3C validator |