ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lfgredg2dom GIF version

Theorem lfgredg2dom 15924
Description: An edge of a loop-free graph has at least two ends. (Contributed by AV, 23-Feb-2021.)
Hypotheses
Ref Expression
lfuhgrnloopv.i 𝐼 = (iEdg‘𝐺)
lfuhgrnloopv.a 𝐴 = dom 𝐼
lfuhgrnloopv.e 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥}
Assertion
Ref Expression
lfgredg2dom ((𝐼:𝐴𝐸𝑋𝐴) → 2o ≼ (𝐼𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐼   𝑥,𝑉
Allowed substitution hints:   𝐸(𝑥)   𝐺(𝑥)   𝑋(𝑥)

Proof of Theorem lfgredg2dom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . . 5 𝐴 = 𝐴
2 lfuhgrnloopv.e . . . . 5 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥}
31, 2feq23i 5467 . . . 4 (𝐼:𝐴𝐸𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥})
43biimpi 120 . . 3 (𝐼:𝐴𝐸𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥})
54ffvelcdmda 5769 . 2 ((𝐼:𝐴𝐸𝑋𝐴) → (𝐼𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥})
6 breq2 4086 . . . 4 (𝑦 = (𝐼𝑋) → (2o𝑦 ↔ 2o ≼ (𝐼𝑋)))
7 breq2 4086 . . . . 5 (𝑥 = 𝑦 → (2o𝑥 ↔ 2o𝑦))
87cbvrabv 2798 . . . 4 {𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥} = {𝑦 ∈ 𝒫 𝑉 ∣ 2o𝑦}
96, 8elrab2 2962 . . 3 ((𝐼𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥} ↔ ((𝐼𝑋) ∈ 𝒫 𝑉 ∧ 2o ≼ (𝐼𝑋)))
109simprbi 275 . 2 ((𝐼𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2o𝑥} → 2o ≼ (𝐼𝑋))
115, 10syl 14 1 ((𝐼:𝐴𝐸𝑋𝐴) → 2o ≼ (𝐼𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  {crab 2512  𝒫 cpw 3649   class class class wbr 4082  dom cdm 4718  wf 5313  cfv 5317  2oc2o 6554  cdom 6884  iEdgciedg 15808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325
This theorem is referenced by:  lfgrnloopen  15925
  Copyright terms: Public domain W3C validator