| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvoveq1 | Unicode version | ||
| Description: Equality theorem for nested function and operation value. Closed form of fvoveq1d 5944. (Contributed by AV, 23-Jul-2022.) |
| Ref | Expression |
|---|---|
| fvoveq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | 1 | fvoveq1d 5944 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 |
| This theorem is referenced by: fldiv4lem1div2 10397 seq3val 10552 seqvalcd 10553 seqf 10556 seq3p1 10557 seqovcd 10559 seqp1cd 10562 seq3shft2 10573 seqshft2g 10574 seq3f1olemqsum 10605 seqhomog 10622 facp1 10822 serf0 11517 fsumrelem 11636 mertenslemub 11699 mertenslemi1 11700 mertenslem2 11701 mertensabs 11702 bitsfval 12107 pcfac 12519 ennnfonelemj0 12618 ennnfonelemjn 12619 ennnfonelem0 12622 ennnfonelemp1 12623 ennnfonelemnn0 12639 nninfdclemcl 12665 nninfdclemp1 12667 nninfdc 12670 imasaddvallemg 12958 mhmlin 13099 mhmlem 13244 mulginvcom 13277 mhmmulg 13293 ghmlin 13378 comet 14735 mulc1cncf 14825 cncfco 14827 mulcncflem 14843 mulcncf 14844 ivthinclemlopn 14872 ivthinclemuopn 14874 limcimolemlt 14900 limccoap 14914 dvply1 15001 dvply2g 15002 eflt 15011 rpcxpef 15130 2lgslem3a 15334 2lgslem3b 15335 2lgslem3c 15336 2lgslem3d 15337 |
| Copyright terms: Public domain | W3C validator |