| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvoveq1 | Unicode version | ||
| Description: Equality theorem for nested function and operation value. Closed form of fvoveq1d 5947. (Contributed by AV, 23-Jul-2022.) |
| Ref | Expression |
|---|---|
| fvoveq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | 1 | fvoveq1d 5947 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: fldiv4lem1div2 10414 seq3val 10569 seqvalcd 10570 seqf 10573 seq3p1 10574 seqovcd 10576 seqp1cd 10579 seq3shft2 10590 seqshft2g 10591 seq3f1olemqsum 10622 seqhomog 10639 facp1 10839 serf0 11534 fsumrelem 11653 mertenslemub 11716 mertenslemi1 11717 mertenslem2 11718 mertensabs 11719 bitsfval 12124 pcfac 12544 ennnfonelemj0 12643 ennnfonelemjn 12644 ennnfonelem0 12647 ennnfonelemp1 12648 ennnfonelemnn0 12664 nninfdclemcl 12690 nninfdclemp1 12692 nninfdc 12695 imasaddvallemg 13017 mhmlin 13169 mhmlem 13320 mulginvcom 13353 mhmmulg 13369 ghmlin 13454 comet 14819 mulc1cncf 14909 cncfco 14911 mulcncflem 14927 mulcncf 14928 ivthinclemlopn 14956 ivthinclemuopn 14958 limcimolemlt 14984 limccoap 14998 dvply1 15085 dvply2g 15086 eflt 15095 rpcxpef 15214 2lgslem3a 15418 2lgslem3b 15419 2lgslem3c 15420 2lgslem3d 15421 |
| Copyright terms: Public domain | W3C validator |