Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvoveq1 | Unicode version |
Description: Equality theorem for nested function and operation value. Closed form of fvoveq1d 5875. (Contributed by AV, 23-Jul-2022.) |
Ref | Expression |
---|---|
fvoveq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 | |
2 | 1 | fvoveq1d 5875 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 cfv 5198 (class class class)co 5853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: seq3val 10414 seqvalcd 10415 seqf 10417 seq3p1 10418 seqovcd 10419 seqp1cd 10422 seq3shft2 10429 seq3f1olemqsum 10456 facp1 10664 serf0 11315 fsumrelem 11434 mertenslemub 11497 mertenslemi1 11498 mertenslem2 11499 mertensabs 11500 pcfac 12302 ennnfonelemj0 12356 ennnfonelemjn 12357 ennnfonelem0 12360 ennnfonelemp1 12361 ennnfonelemnn0 12377 nninfdclemcl 12403 nninfdclemp1 12405 nninfdc 12408 mhmlin 12690 comet 13293 mulc1cncf 13370 cncfco 13372 mulcncflem 13384 mulcncf 13385 ivthinclemlopn 13408 ivthinclemuopn 13410 limcimolemlt 13427 limccoap 13441 eflt 13490 rpcxpef 13609 |
Copyright terms: Public domain | W3C validator |