| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvoveq1 | Unicode version | ||
| Description: Equality theorem for nested function and operation value. Closed form of fvoveq1d 6023. (Contributed by AV, 23-Jul-2022.) |
| Ref | Expression |
|---|---|
| fvoveq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | 1 | fvoveq1d 6023 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 |
| This theorem is referenced by: fldiv4lem1div2 10527 seq3val 10682 seqvalcd 10683 seqf 10686 seq3p1 10687 seqovcd 10689 seqp1cd 10692 seq3shft2 10703 seqshft2g 10704 seq3f1olemqsum 10735 seqhomog 10752 facp1 10952 lsw0 11119 ccatval1 11132 ccatval2 11133 swrdfv 11185 serf0 11863 fsumrelem 11982 mertenslemub 12045 mertenslemi1 12046 mertenslem2 12047 mertensabs 12048 bitsfval 12453 pcfac 12873 ennnfonelemj0 12972 ennnfonelemjn 12973 ennnfonelem0 12976 ennnfonelemp1 12977 ennnfonelemnn0 12993 nninfdclemcl 13019 nninfdclemp1 13021 nninfdc 13024 imasaddvallemg 13348 mhmlin 13500 mhmlem 13651 mulginvcom 13684 mhmmulg 13700 ghmlin 13785 comet 15173 mulc1cncf 15263 cncfco 15265 mulcncflem 15281 mulcncf 15282 ivthinclemlopn 15310 ivthinclemuopn 15312 limcimolemlt 15338 limccoap 15352 dvply1 15439 dvply2g 15440 eflt 15449 rpcxpef 15568 2lgslem3a 15772 2lgslem3b 15773 2lgslem3c 15774 2lgslem3d 15775 wkslem1 16033 uspgr2wlkeq 16076 |
| Copyright terms: Public domain | W3C validator |