| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvoveq1 | Unicode version | ||
| Description: Equality theorem for nested function and operation value. Closed form of fvoveq1d 5968. (Contributed by AV, 23-Jul-2022.) |
| Ref | Expression |
|---|---|
| fvoveq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | 1 | fvoveq1d 5968 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 |
| This theorem is referenced by: fldiv4lem1div2 10452 seq3val 10607 seqvalcd 10608 seqf 10611 seq3p1 10612 seqovcd 10614 seqp1cd 10617 seq3shft2 10628 seqshft2g 10629 seq3f1olemqsum 10660 seqhomog 10677 facp1 10877 lsw0 11043 ccatval1 11056 ccatval2 11057 swrdfv 11109 serf0 11696 fsumrelem 11815 mertenslemub 11878 mertenslemi1 11879 mertenslem2 11880 mertensabs 11881 bitsfval 12286 pcfac 12706 ennnfonelemj0 12805 ennnfonelemjn 12806 ennnfonelem0 12809 ennnfonelemp1 12810 ennnfonelemnn0 12826 nninfdclemcl 12852 nninfdclemp1 12854 nninfdc 12857 imasaddvallemg 13180 mhmlin 13332 mhmlem 13483 mulginvcom 13516 mhmmulg 13532 ghmlin 13617 comet 15004 mulc1cncf 15094 cncfco 15096 mulcncflem 15112 mulcncf 15113 ivthinclemlopn 15141 ivthinclemuopn 15143 limcimolemlt 15169 limccoap 15183 dvply1 15270 dvply2g 15271 eflt 15280 rpcxpef 15399 2lgslem3a 15603 2lgslem3b 15604 2lgslem3c 15605 2lgslem3d 15606 |
| Copyright terms: Public domain | W3C validator |