ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funoprabg Unicode version

Theorem funoprabg 5941
Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 28-Aug-2007.)
Assertion
Ref Expression
funoprabg  |-  ( A. x A. y E* z ph  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ph } )
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem funoprabg
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 mosubopt 4669 . . 3  |-  ( A. x A. y E* z ph  ->  E* z E. x E. y ( w  =  <. x ,  y >.  /\  ph ) )
21alrimiv 1862 . 2  |-  ( A. x A. y E* z ph  ->  A. w E* z E. x E. y ( w  =  <. x ,  y >.  /\  ph ) )
3 dfoprab2 5889 . . . 4  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
43funeqi 5209 . . 3  |-  ( Fun 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  <->  Fun  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) } )
5 funopab 5223 . . 3  |-  ( Fun 
{ <. w ,  z
>.  |  E. x E. y ( w  = 
<. x ,  y >.  /\  ph ) }  <->  A. w E* z E. x E. y ( w  = 
<. x ,  y >.  /\  ph ) )
64, 5bitr2i 184 . 2  |-  ( A. w E* z E. x E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  Fun  { <. <.
x ,  y >. ,  z >.  |  ph } )
72, 6sylib 121 1  |-  ( A. x A. y E* z ph  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341    = wceq 1343   E.wex 1480   E*wmo 2015   <.cop 3579   {copab 4042   Fun wfun 5182   {coprab 5843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-fun 5190  df-oprab 5846
This theorem is referenced by:  funoprab  5942  fnoprabg  5943  oprabexd  6095
  Copyright terms: Public domain W3C validator