ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funoprabg Unicode version

Theorem funoprabg 5878
Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 28-Aug-2007.)
Assertion
Ref Expression
funoprabg  |-  ( A. x A. y E* z ph  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ph } )
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem funoprabg
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 mosubopt 4612 . . 3  |-  ( A. x A. y E* z ph  ->  E* z E. x E. y ( w  =  <. x ,  y >.  /\  ph ) )
21alrimiv 1847 . 2  |-  ( A. x A. y E* z ph  ->  A. w E* z E. x E. y ( w  =  <. x ,  y >.  /\  ph ) )
3 dfoprab2 5826 . . . 4  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
43funeqi 5152 . . 3  |-  ( Fun 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  <->  Fun  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) } )
5 funopab 5166 . . 3  |-  ( Fun 
{ <. w ,  z
>.  |  E. x E. y ( w  = 
<. x ,  y >.  /\  ph ) }  <->  A. w E* z E. x E. y ( w  = 
<. x ,  y >.  /\  ph ) )
64, 5bitr2i 184 . 2  |-  ( A. w E* z E. x E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  Fun  { <. <.
x ,  y >. ,  z >.  |  ph } )
72, 6sylib 121 1  |-  ( A. x A. y E* z ph  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1330    = wceq 1332   E.wex 1469   E*wmo 2001   <.cop 3535   {copab 3996   Fun wfun 5125   {coprab 5783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-fun 5133  df-oprab 5786
This theorem is referenced by:  funoprab  5879  fnoprabg  5880  oprabexd  6033
  Copyright terms: Public domain W3C validator