ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinperlem Unicode version

Theorem sinperlem 15395
Description: Lemma for sinper 15396 and cosper 15397. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
Hypotheses
Ref Expression
sinperlem.1  |-  ( A  e.  CC  ->  ( F `  A )  =  ( ( ( exp `  ( _i  x.  A ) ) O ( exp `  ( -u _i  x.  A ) ) )  /  D
) )
sinperlem.2  |-  ( ( A  +  ( K  x.  ( 2  x.  pi ) ) )  e.  CC  ->  ( F `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( ( exp `  ( _i  x.  ( A  +  ( K  x.  (
2  x.  pi ) ) ) ) ) O ( exp `  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) ) )  /  D
) )
Assertion
Ref Expression
sinperlem  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( F `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( F `  A ) )

Proof of Theorem sinperlem
StepHypRef Expression
1 zcn 9412 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  K  e.  CC )
2 2cn 9142 . . . . . . . . . 10  |-  2  e.  CC
3 picn 15374 . . . . . . . . . 10  |-  pi  e.  CC
42, 3mulcli 8112 . . . . . . . . 9  |-  ( 2  x.  pi )  e.  CC
5 mulcl 8087 . . . . . . . . 9  |-  ( ( K  e.  CC  /\  ( 2  x.  pi )  e.  CC )  ->  ( K  x.  (
2  x.  pi ) )  e.  CC )
61, 4, 5sylancl 413 . . . . . . . 8  |-  ( K  e.  ZZ  ->  ( K  x.  ( 2  x.  pi ) )  e.  CC )
7 ax-icn 8055 . . . . . . . . 9  |-  _i  e.  CC
8 adddi 8092 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC  /\  ( K  x.  ( 2  x.  pi ) )  e.  CC )  -> 
( _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( _i  x.  A )  +  ( _i  x.  ( K  x.  ( 2  x.  pi ) ) ) ) )
97, 8mp3an1 1337 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( K  x.  (
2  x.  pi ) )  e.  CC )  ->  ( _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( _i  x.  A
)  +  ( _i  x.  ( K  x.  ( 2  x.  pi ) ) ) ) )
106, 9sylan2 286 . . . . . . 7  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( _i  x.  A )  +  ( _i  x.  ( K  x.  ( 2  x.  pi ) ) ) ) )
11 mul12 8236 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  K  e.  CC  /\  (
2  x.  pi )  e.  CC )  -> 
( _i  x.  ( K  x.  ( 2  x.  pi ) ) )  =  ( K  x.  ( _i  x.  ( 2  x.  pi ) ) ) )
127, 4, 11mp3an13 1341 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
_i  x.  ( K  x.  ( 2  x.  pi ) ) )  =  ( K  x.  (
_i  x.  ( 2  x.  pi ) ) ) )
131, 12syl 14 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  (
_i  x.  ( K  x.  ( 2  x.  pi ) ) )  =  ( K  x.  (
_i  x.  ( 2  x.  pi ) ) ) )
147, 4mulcli 8112 . . . . . . . . . . 11  |-  ( _i  x.  ( 2  x.  pi ) )  e.  CC
15 mulcom 8089 . . . . . . . . . . 11  |-  ( ( K  e.  CC  /\  ( _i  x.  (
2  x.  pi ) )  e.  CC )  ->  ( K  x.  ( _i  x.  (
2  x.  pi ) ) )  =  ( ( _i  x.  (
2  x.  pi ) )  x.  K ) )
161, 14, 15sylancl 413 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  ( K  x.  ( _i  x.  ( 2  x.  pi ) ) )  =  ( ( _i  x.  ( 2  x.  pi ) )  x.  K
) )
1713, 16eqtrd 2240 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  (
_i  x.  ( K  x.  ( 2  x.  pi ) ) )  =  ( ( _i  x.  ( 2  x.  pi ) )  x.  K
) )
1817adantl 277 . . . . . . . 8  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( _i  x.  ( K  x.  ( 2  x.  pi ) ) )  =  ( ( _i  x.  ( 2  x.  pi ) )  x.  K ) )
1918oveq2d 5983 . . . . . . 7  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( ( _i  x.  A )  +  ( _i  x.  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( _i  x.  A )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  K ) ) )
2010, 19eqtrd 2240 . . . . . 6  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( _i  x.  A )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  K
) ) )
2120fveq2d 5603 . . . . 5  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( exp `  (
_i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) )  =  ( exp `  ( ( _i  x.  A )  +  ( ( _i  x.  (
2  x.  pi ) )  x.  K ) ) ) )
22 mulcl 8087 . . . . . . 7  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
237, 22mpan 424 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
24 efper 15394 . . . . . 6  |-  ( ( ( _i  x.  A
)  e.  CC  /\  K  e.  ZZ )  ->  ( exp `  (
( _i  x.  A
)  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  K ) ) )  =  ( exp `  ( _i  x.  A
) ) )
2523, 24sylan 283 . . . . 5  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( exp `  (
( _i  x.  A
)  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  K ) ) )  =  ( exp `  ( _i  x.  A
) ) )
2621, 25eqtrd 2240 . . . 4  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( exp `  (
_i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) )  =  ( exp `  ( _i  x.  A
) ) )
27 negicn 8308 . . . . . . . . 9  |-  -u _i  e.  CC
28 adddi 8092 . . . . . . . . 9  |-  ( (
-u _i  e.  CC  /\  A  e.  CC  /\  ( K  x.  (
2  x.  pi ) )  e.  CC )  ->  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( -u _i  x.  A )  +  (
-u _i  x.  ( K  x.  ( 2  x.  pi ) ) ) ) )
2927, 28mp3an1 1337 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( K  x.  (
2  x.  pi ) )  e.  CC )  ->  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( -u _i  x.  A )  +  (
-u _i  x.  ( K  x.  ( 2  x.  pi ) ) ) ) )
306, 29sylan2 286 . . . . . . 7  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( -u _i  x.  A )  +  (
-u _i  x.  ( K  x.  ( 2  x.  pi ) ) ) ) )
3117negeqd 8302 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  -u (
_i  x.  ( K  x.  ( 2  x.  pi ) ) )  = 
-u ( ( _i  x.  ( 2  x.  pi ) )  x.  K ) )
32 mulneg1 8502 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  ( K  x.  (
2  x.  pi ) )  e.  CC )  ->  ( -u _i  x.  ( K  x.  (
2  x.  pi ) ) )  =  -u ( _i  x.  ( K  x.  ( 2  x.  pi ) ) ) )
337, 6, 32sylancr 414 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  ( -u _i  x.  ( K  x.  ( 2  x.  pi ) ) )  =  -u ( _i  x.  ( K  x.  (
2  x.  pi ) ) ) )
34 mulneg2 8503 . . . . . . . . . . 11  |-  ( ( ( _i  x.  (
2  x.  pi ) )  e.  CC  /\  K  e.  CC )  ->  ( ( _i  x.  ( 2  x.  pi ) )  x.  -u K
)  =  -u (
( _i  x.  (
2  x.  pi ) )  x.  K ) )
3514, 1, 34sylancr 414 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  (
( _i  x.  (
2  x.  pi ) )  x.  -u K
)  =  -u (
( _i  x.  (
2  x.  pi ) )  x.  K ) )
3631, 33, 353eqtr4d 2250 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  ( -u _i  x.  ( K  x.  ( 2  x.  pi ) ) )  =  ( ( _i  x.  ( 2  x.  pi ) )  x.  -u K ) )
3736adantl 277 . . . . . . . 8  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( -u _i  x.  ( K  x.  (
2  x.  pi ) ) )  =  ( ( _i  x.  (
2  x.  pi ) )  x.  -u K
) )
3837oveq2d 5983 . . . . . . 7  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( ( -u _i  x.  A )  +  (
-u _i  x.  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( -u _i  x.  A )  +  ( ( _i  x.  (
2  x.  pi ) )  x.  -u K
) ) )
3930, 38eqtrd 2240 . . . . . 6  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( -u _i  x.  A )  +  ( ( _i  x.  (
2  x.  pi ) )  x.  -u K
) ) )
4039fveq2d 5603 . . . . 5  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( exp `  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) )  =  ( exp `  ( ( -u _i  x.  A )  +  ( ( _i  x.  (
2  x.  pi ) )  x.  -u K
) ) ) )
41 mulcl 8087 . . . . . . 7  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
4227, 41mpan 424 . . . . . 6  |-  ( A  e.  CC  ->  ( -u _i  x.  A )  e.  CC )
43 znegcl 9438 . . . . . 6  |-  ( K  e.  ZZ  ->  -u K  e.  ZZ )
44 efper 15394 . . . . . 6  |-  ( ( ( -u _i  x.  A )  e.  CC  /\  -u K  e.  ZZ )  ->  ( exp `  (
( -u _i  x.  A
)  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  -u K ) ) )  =  ( exp `  ( -u _i  x.  A ) ) )
4542, 43, 44syl2an 289 . . . . 5  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( exp `  (
( -u _i  x.  A
)  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  -u K ) ) )  =  ( exp `  ( -u _i  x.  A ) ) )
4640, 45eqtrd 2240 . . . 4  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( exp `  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) )  =  ( exp `  ( -u _i  x.  A ) ) )
4726, 46oveq12d 5985 . . 3  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( ( exp `  (
_i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) ) O ( exp `  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) ) )  =  ( ( exp `  ( _i  x.  A
) ) O ( exp `  ( -u _i  x.  A ) ) ) )
4847oveq1d 5982 . 2  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( ( ( exp `  ( _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) ) O ( exp `  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) ) )  /  D )  =  ( ( ( exp `  ( _i  x.  A
) ) O ( exp `  ( -u _i  x.  A ) ) )  /  D ) )
49 addcl 8085 . . . 4  |-  ( ( A  e.  CC  /\  ( K  x.  (
2  x.  pi ) )  e.  CC )  ->  ( A  +  ( K  x.  (
2  x.  pi ) ) )  e.  CC )
506, 49sylan2 286 . . 3  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( A  +  ( K  x.  ( 2  x.  pi ) ) )  e.  CC )
51 sinperlem.2 . . 3  |-  ( ( A  +  ( K  x.  ( 2  x.  pi ) ) )  e.  CC  ->  ( F `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( ( exp `  ( _i  x.  ( A  +  ( K  x.  (
2  x.  pi ) ) ) ) ) O ( exp `  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) ) )  /  D
) )
5250, 51syl 14 . 2  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( F `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( ( exp `  ( _i  x.  ( A  +  ( K  x.  (
2  x.  pi ) ) ) ) ) O ( exp `  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) ) )  /  D
) )
53 sinperlem.1 . . 3  |-  ( A  e.  CC  ->  ( F `  A )  =  ( ( ( exp `  ( _i  x.  A ) ) O ( exp `  ( -u _i  x.  A ) ) )  /  D
) )
5453adantr 276 . 2  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( F `  A
)  =  ( ( ( exp `  (
_i  x.  A )
) O ( exp `  ( -u _i  x.  A ) ) )  /  D ) )
5548, 52, 543eqtr4d 2250 1  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( F `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( F `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   CCcc 7958   _ici 7962    + caddc 7963    x. cmul 7965   -ucneg 8279    / cdiv 8780   2c2 9122   ZZcz 9407   expce 12068   picpi 12073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080  ax-pre-suploc 8081  ax-addf 8082  ax-mulf 8083
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-disj 4036  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-of 6181  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-map 6760  df-pm 6761  df-en 6851  df-dom 6852  df-fin 6853  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-ioo 10049  df-ioc 10050  df-ico 10051  df-icc 10052  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-fac 10908  df-bc 10930  df-ihash 10958  df-shft 11241  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780  df-ef 12074  df-sin 12076  df-cos 12077  df-pi 12079  df-rest 13188  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-met 14422  df-bl 14423  df-mopn 14424  df-top 14585  df-topon 14598  df-bases 14630  df-ntr 14683  df-cn 14775  df-cnp 14776  df-tx 14840  df-cncf 15158  df-limced 15243  df-dvap 15244
This theorem is referenced by:  sinper  15396  cosper  15397
  Copyright terms: Public domain W3C validator