ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinperlem Unicode version

Theorem sinperlem 14469
Description: Lemma for sinper 14470 and cosper 14471. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
Hypotheses
Ref Expression
sinperlem.1  |-  ( A  e.  CC  ->  ( F `  A )  =  ( ( ( exp `  ( _i  x.  A ) ) O ( exp `  ( -u _i  x.  A ) ) )  /  D
) )
sinperlem.2  |-  ( ( A  +  ( K  x.  ( 2  x.  pi ) ) )  e.  CC  ->  ( F `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( ( exp `  ( _i  x.  ( A  +  ( K  x.  (
2  x.  pi ) ) ) ) ) O ( exp `  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) ) )  /  D
) )
Assertion
Ref Expression
sinperlem  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( F `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( F `  A ) )

Proof of Theorem sinperlem
StepHypRef Expression
1 zcn 9271 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  K  e.  CC )
2 2cn 9003 . . . . . . . . . 10  |-  2  e.  CC
3 picn 14448 . . . . . . . . . 10  |-  pi  e.  CC
42, 3mulcli 7975 . . . . . . . . 9  |-  ( 2  x.  pi )  e.  CC
5 mulcl 7951 . . . . . . . . 9  |-  ( ( K  e.  CC  /\  ( 2  x.  pi )  e.  CC )  ->  ( K  x.  (
2  x.  pi ) )  e.  CC )
61, 4, 5sylancl 413 . . . . . . . 8  |-  ( K  e.  ZZ  ->  ( K  x.  ( 2  x.  pi ) )  e.  CC )
7 ax-icn 7919 . . . . . . . . 9  |-  _i  e.  CC
8 adddi 7956 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC  /\  ( K  x.  ( 2  x.  pi ) )  e.  CC )  -> 
( _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( _i  x.  A )  +  ( _i  x.  ( K  x.  ( 2  x.  pi ) ) ) ) )
97, 8mp3an1 1334 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( K  x.  (
2  x.  pi ) )  e.  CC )  ->  ( _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( _i  x.  A
)  +  ( _i  x.  ( K  x.  ( 2  x.  pi ) ) ) ) )
106, 9sylan2 286 . . . . . . 7  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( _i  x.  A )  +  ( _i  x.  ( K  x.  ( 2  x.  pi ) ) ) ) )
11 mul12 8099 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  K  e.  CC  /\  (
2  x.  pi )  e.  CC )  -> 
( _i  x.  ( K  x.  ( 2  x.  pi ) ) )  =  ( K  x.  ( _i  x.  ( 2  x.  pi ) ) ) )
127, 4, 11mp3an13 1338 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
_i  x.  ( K  x.  ( 2  x.  pi ) ) )  =  ( K  x.  (
_i  x.  ( 2  x.  pi ) ) ) )
131, 12syl 14 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  (
_i  x.  ( K  x.  ( 2  x.  pi ) ) )  =  ( K  x.  (
_i  x.  ( 2  x.  pi ) ) ) )
147, 4mulcli 7975 . . . . . . . . . . 11  |-  ( _i  x.  ( 2  x.  pi ) )  e.  CC
15 mulcom 7953 . . . . . . . . . . 11  |-  ( ( K  e.  CC  /\  ( _i  x.  (
2  x.  pi ) )  e.  CC )  ->  ( K  x.  ( _i  x.  (
2  x.  pi ) ) )  =  ( ( _i  x.  (
2  x.  pi ) )  x.  K ) )
161, 14, 15sylancl 413 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  ( K  x.  ( _i  x.  ( 2  x.  pi ) ) )  =  ( ( _i  x.  ( 2  x.  pi ) )  x.  K
) )
1713, 16eqtrd 2220 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  (
_i  x.  ( K  x.  ( 2  x.  pi ) ) )  =  ( ( _i  x.  ( 2  x.  pi ) )  x.  K
) )
1817adantl 277 . . . . . . . 8  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( _i  x.  ( K  x.  ( 2  x.  pi ) ) )  =  ( ( _i  x.  ( 2  x.  pi ) )  x.  K ) )
1918oveq2d 5904 . . . . . . 7  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( ( _i  x.  A )  +  ( _i  x.  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( _i  x.  A )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  K ) ) )
2010, 19eqtrd 2220 . . . . . 6  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( _i  x.  A )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  K
) ) )
2120fveq2d 5531 . . . . 5  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( exp `  (
_i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) )  =  ( exp `  ( ( _i  x.  A )  +  ( ( _i  x.  (
2  x.  pi ) )  x.  K ) ) ) )
22 mulcl 7951 . . . . . . 7  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
237, 22mpan 424 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
24 efper 14468 . . . . . 6  |-  ( ( ( _i  x.  A
)  e.  CC  /\  K  e.  ZZ )  ->  ( exp `  (
( _i  x.  A
)  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  K ) ) )  =  ( exp `  ( _i  x.  A
) ) )
2523, 24sylan 283 . . . . 5  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( exp `  (
( _i  x.  A
)  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  K ) ) )  =  ( exp `  ( _i  x.  A
) ) )
2621, 25eqtrd 2220 . . . 4  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( exp `  (
_i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) )  =  ( exp `  ( _i  x.  A
) ) )
27 negicn 8171 . . . . . . . . 9  |-  -u _i  e.  CC
28 adddi 7956 . . . . . . . . 9  |-  ( (
-u _i  e.  CC  /\  A  e.  CC  /\  ( K  x.  (
2  x.  pi ) )  e.  CC )  ->  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( -u _i  x.  A )  +  (
-u _i  x.  ( K  x.  ( 2  x.  pi ) ) ) ) )
2927, 28mp3an1 1334 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( K  x.  (
2  x.  pi ) )  e.  CC )  ->  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( -u _i  x.  A )  +  (
-u _i  x.  ( K  x.  ( 2  x.  pi ) ) ) ) )
306, 29sylan2 286 . . . . . . 7  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( -u _i  x.  A )  +  (
-u _i  x.  ( K  x.  ( 2  x.  pi ) ) ) ) )
3117negeqd 8165 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  -u (
_i  x.  ( K  x.  ( 2  x.  pi ) ) )  = 
-u ( ( _i  x.  ( 2  x.  pi ) )  x.  K ) )
32 mulneg1 8365 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  ( K  x.  (
2  x.  pi ) )  e.  CC )  ->  ( -u _i  x.  ( K  x.  (
2  x.  pi ) ) )  =  -u ( _i  x.  ( K  x.  ( 2  x.  pi ) ) ) )
337, 6, 32sylancr 414 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  ( -u _i  x.  ( K  x.  ( 2  x.  pi ) ) )  =  -u ( _i  x.  ( K  x.  (
2  x.  pi ) ) ) )
34 mulneg2 8366 . . . . . . . . . . 11  |-  ( ( ( _i  x.  (
2  x.  pi ) )  e.  CC  /\  K  e.  CC )  ->  ( ( _i  x.  ( 2  x.  pi ) )  x.  -u K
)  =  -u (
( _i  x.  (
2  x.  pi ) )  x.  K ) )
3514, 1, 34sylancr 414 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  (
( _i  x.  (
2  x.  pi ) )  x.  -u K
)  =  -u (
( _i  x.  (
2  x.  pi ) )  x.  K ) )
3631, 33, 353eqtr4d 2230 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  ( -u _i  x.  ( K  x.  ( 2  x.  pi ) ) )  =  ( ( _i  x.  ( 2  x.  pi ) )  x.  -u K ) )
3736adantl 277 . . . . . . . 8  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( -u _i  x.  ( K  x.  (
2  x.  pi ) ) )  =  ( ( _i  x.  (
2  x.  pi ) )  x.  -u K
) )
3837oveq2d 5904 . . . . . . 7  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( ( -u _i  x.  A )  +  (
-u _i  x.  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( -u _i  x.  A )  +  ( ( _i  x.  (
2  x.  pi ) )  x.  -u K
) ) )
3930, 38eqtrd 2220 . . . . . 6  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( -u _i  x.  A )  +  ( ( _i  x.  (
2  x.  pi ) )  x.  -u K
) ) )
4039fveq2d 5531 . . . . 5  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( exp `  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) )  =  ( exp `  ( ( -u _i  x.  A )  +  ( ( _i  x.  (
2  x.  pi ) )  x.  -u K
) ) ) )
41 mulcl 7951 . . . . . . 7  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
4227, 41mpan 424 . . . . . 6  |-  ( A  e.  CC  ->  ( -u _i  x.  A )  e.  CC )
43 znegcl 9297 . . . . . 6  |-  ( K  e.  ZZ  ->  -u K  e.  ZZ )
44 efper 14468 . . . . . 6  |-  ( ( ( -u _i  x.  A )  e.  CC  /\  -u K  e.  ZZ )  ->  ( exp `  (
( -u _i  x.  A
)  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  -u K ) ) )  =  ( exp `  ( -u _i  x.  A ) ) )
4542, 43, 44syl2an 289 . . . . 5  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( exp `  (
( -u _i  x.  A
)  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  -u K ) ) )  =  ( exp `  ( -u _i  x.  A ) ) )
4640, 45eqtrd 2220 . . . 4  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( exp `  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) )  =  ( exp `  ( -u _i  x.  A ) ) )
4726, 46oveq12d 5906 . . 3  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( ( exp `  (
_i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) ) O ( exp `  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) ) )  =  ( ( exp `  ( _i  x.  A
) ) O ( exp `  ( -u _i  x.  A ) ) ) )
4847oveq1d 5903 . 2  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( ( ( exp `  ( _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) ) O ( exp `  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) ) )  /  D )  =  ( ( ( exp `  ( _i  x.  A
) ) O ( exp `  ( -u _i  x.  A ) ) )  /  D ) )
49 addcl 7949 . . . 4  |-  ( ( A  e.  CC  /\  ( K  x.  (
2  x.  pi ) )  e.  CC )  ->  ( A  +  ( K  x.  (
2  x.  pi ) ) )  e.  CC )
506, 49sylan2 286 . . 3  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( A  +  ( K  x.  ( 2  x.  pi ) ) )  e.  CC )
51 sinperlem.2 . . 3  |-  ( ( A  +  ( K  x.  ( 2  x.  pi ) ) )  e.  CC  ->  ( F `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( ( exp `  ( _i  x.  ( A  +  ( K  x.  (
2  x.  pi ) ) ) ) ) O ( exp `  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) ) )  /  D
) )
5250, 51syl 14 . 2  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( F `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( ( exp `  ( _i  x.  ( A  +  ( K  x.  (
2  x.  pi ) ) ) ) ) O ( exp `  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) ) )  /  D
) )
53 sinperlem.1 . . 3  |-  ( A  e.  CC  ->  ( F `  A )  =  ( ( ( exp `  ( _i  x.  A ) ) O ( exp `  ( -u _i  x.  A ) ) )  /  D
) )
5453adantr 276 . 2  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( F `  A
)  =  ( ( ( exp `  (
_i  x.  A )
) O ( exp `  ( -u _i  x.  A ) ) )  /  D ) )
5548, 52, 543eqtr4d 2230 1  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( F `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( F `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   ` cfv 5228  (class class class)co 5888   CCcc 7822   _ici 7826    + caddc 7827    x. cmul 7829   -ucneg 8142    / cdiv 8642   2c2 8983   ZZcz 9266   expce 11663   picpi 11668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944  ax-pre-suploc 7945  ax-addf 7946  ax-mulf 7947
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-disj 3993  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-of 6096  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-frec 6405  df-1o 6430  df-oadd 6434  df-er 6548  df-map 6663  df-pm 6664  df-en 6754  df-dom 6755  df-fin 6756  df-sup 6996  df-inf 6997  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-5 8994  df-6 8995  df-7 8996  df-8 8997  df-9 8998  df-n0 9190  df-z 9267  df-uz 9542  df-q 9633  df-rp 9667  df-xneg 9785  df-xadd 9786  df-ioo 9905  df-ioc 9906  df-ico 9907  df-icc 9908  df-fz 10022  df-fzo 10156  df-seqfrec 10459  df-exp 10533  df-fac 10719  df-bc 10741  df-ihash 10769  df-shft 10837  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021  df-clim 11300  df-sumdc 11375  df-ef 11669  df-sin 11671  df-cos 11672  df-pi 11674  df-rest 12707  df-topgen 12726  df-psmet 13673  df-xmet 13674  df-met 13675  df-bl 13676  df-mopn 13677  df-top 13738  df-topon 13751  df-bases 13783  df-ntr 13836  df-cn 13928  df-cnp 13929  df-tx 13993  df-cncf 14298  df-limced 14365  df-dvap 14366
This theorem is referenced by:  sinper  14470  cosper  14471
  Copyright terms: Public domain W3C validator