| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sinperlem | Unicode version | ||
| Description: Lemma for sinper 15252 and cosper 15253. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
| Ref | Expression |
|---|---|
| sinperlem.1 |
|
| sinperlem.2 |
|
| Ref | Expression |
|---|---|
| sinperlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9376 |
. . . . . . . . 9
| |
| 2 | 2cn 9106 |
. . . . . . . . . 10
| |
| 3 | picn 15230 |
. . . . . . . . . 10
| |
| 4 | 2, 3 | mulcli 8076 |
. . . . . . . . 9
|
| 5 | mulcl 8051 |
. . . . . . . . 9
| |
| 6 | 1, 4, 5 | sylancl 413 |
. . . . . . . 8
|
| 7 | ax-icn 8019 |
. . . . . . . . 9
| |
| 8 | adddi 8056 |
. . . . . . . . 9
| |
| 9 | 7, 8 | mp3an1 1336 |
. . . . . . . 8
|
| 10 | 6, 9 | sylan2 286 |
. . . . . . 7
|
| 11 | mul12 8200 |
. . . . . . . . . . . 12
| |
| 12 | 7, 4, 11 | mp3an13 1340 |
. . . . . . . . . . 11
|
| 13 | 1, 12 | syl 14 |
. . . . . . . . . 10
|
| 14 | 7, 4 | mulcli 8076 |
. . . . . . . . . . 11
|
| 15 | mulcom 8053 |
. . . . . . . . . . 11
| |
| 16 | 1, 14, 15 | sylancl 413 |
. . . . . . . . . 10
|
| 17 | 13, 16 | eqtrd 2237 |
. . . . . . . . 9
|
| 18 | 17 | adantl 277 |
. . . . . . . 8
|
| 19 | 18 | oveq2d 5959 |
. . . . . . 7
|
| 20 | 10, 19 | eqtrd 2237 |
. . . . . 6
|
| 21 | 20 | fveq2d 5579 |
. . . . 5
|
| 22 | mulcl 8051 |
. . . . . . 7
| |
| 23 | 7, 22 | mpan 424 |
. . . . . 6
|
| 24 | efper 15250 |
. . . . . 6
| |
| 25 | 23, 24 | sylan 283 |
. . . . 5
|
| 26 | 21, 25 | eqtrd 2237 |
. . . 4
|
| 27 | negicn 8272 |
. . . . . . . . 9
| |
| 28 | adddi 8056 |
. . . . . . . . 9
| |
| 29 | 27, 28 | mp3an1 1336 |
. . . . . . . 8
|
| 30 | 6, 29 | sylan2 286 |
. . . . . . 7
|
| 31 | 17 | negeqd 8266 |
. . . . . . . . . 10
|
| 32 | mulneg1 8466 |
. . . . . . . . . . 11
| |
| 33 | 7, 6, 32 | sylancr 414 |
. . . . . . . . . 10
|
| 34 | mulneg2 8467 |
. . . . . . . . . . 11
| |
| 35 | 14, 1, 34 | sylancr 414 |
. . . . . . . . . 10
|
| 36 | 31, 33, 35 | 3eqtr4d 2247 |
. . . . . . . . 9
|
| 37 | 36 | adantl 277 |
. . . . . . . 8
|
| 38 | 37 | oveq2d 5959 |
. . . . . . 7
|
| 39 | 30, 38 | eqtrd 2237 |
. . . . . 6
|
| 40 | 39 | fveq2d 5579 |
. . . . 5
|
| 41 | mulcl 8051 |
. . . . . . 7
| |
| 42 | 27, 41 | mpan 424 |
. . . . . 6
|
| 43 | znegcl 9402 |
. . . . . 6
| |
| 44 | efper 15250 |
. . . . . 6
| |
| 45 | 42, 43, 44 | syl2an 289 |
. . . . 5
|
| 46 | 40, 45 | eqtrd 2237 |
. . . 4
|
| 47 | 26, 46 | oveq12d 5961 |
. . 3
|
| 48 | 47 | oveq1d 5958 |
. 2
|
| 49 | addcl 8049 |
. . . 4
| |
| 50 | 6, 49 | sylan2 286 |
. . 3
|
| 51 | sinperlem.2 |
. . 3
| |
| 52 | 50, 51 | syl 14 |
. 2
|
| 53 | sinperlem.1 |
. . 3
| |
| 54 | 53 | adantr 276 |
. 2
|
| 55 | 48, 52, 54 | 3eqtr4d 2247 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 ax-pre-suploc 8045 ax-addf 8046 ax-mulf 8047 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-disj 4021 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-of 6157 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-map 6736 df-pm 6737 df-en 6827 df-dom 6828 df-fin 6829 df-sup 7085 df-inf 7086 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-xneg 9893 df-xadd 9894 df-ioo 10013 df-ioc 10014 df-ico 10015 df-icc 10016 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-fac 10869 df-bc 10891 df-ihash 10919 df-shft 11097 df-cj 11124 df-re 11125 df-im 11126 df-rsqrt 11280 df-abs 11281 df-clim 11561 df-sumdc 11636 df-ef 11930 df-sin 11932 df-cos 11933 df-pi 11935 df-rest 13044 df-topgen 13063 df-psmet 14276 df-xmet 14277 df-met 14278 df-bl 14279 df-mopn 14280 df-top 14441 df-topon 14454 df-bases 14486 df-ntr 14539 df-cn 14631 df-cnp 14632 df-tx 14696 df-cncf 15014 df-limced 15099 df-dvap 15100 |
| This theorem is referenced by: sinper 15252 cosper 15253 |
| Copyright terms: Public domain | W3C validator |