ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltntri Unicode version

Theorem ltntri 8085
Description: Negative trichotomy property for real numbers. It is well known that we cannot prove real number trichotomy,  A  <  B  \/  A  =  B  \/  B  <  A. Does that mean there is a pair of real numbers where none of those hold (that is, where we can refute each of those three relationships)? Actually, no, as shown here. This is another example of distinguishing between being unable to prove something, or being able to refute it. (Contributed by Jim Kingdon, 13-Aug-2023.)
Assertion
Ref Expression
ltntri  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  ( -.  A  <  B  /\  -.  A  =  B  /\  -.  B  <  A ) )

Proof of Theorem ltntri
StepHypRef Expression
1 simpll 527 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -.  A  <  B  /\  -.  A  =  B  /\  -.  B  <  A ) )  ->  A  e.  RR )
2 simplr 528 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -.  A  <  B  /\  -.  A  =  B  /\  -.  B  <  A ) )  ->  B  e.  RR )
3 simpr3 1005 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -.  A  <  B  /\  -.  A  =  B  /\  -.  B  <  A ) )  ->  -.  B  <  A )
41, 2, 3nltled 8078 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -.  A  <  B  /\  -.  A  =  B  /\  -.  B  <  A ) )  ->  A  <_  B )
5 simpr1 1003 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -.  A  <  B  /\  -.  A  =  B  /\  -.  B  <  A ) )  ->  -.  A  <  B )
62, 1, 5nltled 8078 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -.  A  <  B  /\  -.  A  =  B  /\  -.  B  <  A ) )  ->  B  <_  A )
71, 2letri3d 8073 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -.  A  <  B  /\  -.  A  =  B  /\  -.  B  <  A ) )  -> 
( A  =  B  <-> 
( A  <_  B  /\  B  <_  A ) ) )
84, 6, 7mpbir2and 944 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -.  A  <  B  /\  -.  A  =  B  /\  -.  B  <  A ) )  ->  A  =  B )
9 simpr2 1004 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -.  A  <  B  /\  -.  A  =  B  /\  -.  B  <  A ) )  ->  -.  A  =  B
)
108, 9pm2.65da 661 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  ( -.  A  <  B  /\  -.  A  =  B  /\  -.  B  <  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4004   RRcr 7810    < clt 7992    <_ cle 7993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-pre-ltirr 7923  ax-pre-apti 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-xp 4633  df-cnv 4635  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator