Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltntri | Unicode version |
Description: Negative trichotomy property for real numbers. It is well known that we cannot prove real number trichotomy, . Does that mean there is a pair of real numbers where none of those hold (that is, where we can refute each of those three relationships)? Actually, no, as shown here. This is another example of distinguishing between being unable to prove something, or being able to refute it. (Contributed by Jim Kingdon, 13-Aug-2023.) |
Ref | Expression |
---|---|
ltntri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 519 | . . . 4 | |
2 | simplr 520 | . . . 4 | |
3 | simpr3 995 | . . . 4 | |
4 | 1, 2, 3 | nltled 8019 | . . 3 |
5 | simpr1 993 | . . . 4 | |
6 | 2, 1, 5 | nltled 8019 | . . 3 |
7 | 1, 2 | letri3d 8014 | . . 3 |
8 | 4, 6, 7 | mpbir2and 934 | . 2 |
9 | simpr2 994 | . 2 | |
10 | 8, 9 | pm2.65da 651 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 class class class wbr 3982 cr 7752 clt 7933 cle 7934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 ax-pre-apti 7868 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |