ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulreap Unicode version

Theorem mulreap 10294
Description: A product with a real multiplier apart from zero is real iff the multiplicand is real. (Contributed by Jim Kingdon, 14-Jun-2020.)
Assertion
Ref Expression
mulreap  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  ( A  e.  RR  <->  ( B  x.  A )  e.  RR ) )

Proof of Theorem mulreap
StepHypRef Expression
1 rereb 10293 . . 3  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Re `  A )  =  A ) )
213ad2ant1 964 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  ( A  e.  RR  <->  ( Re `  A )  =  A ) )
3 recl 10283 . . . . 5  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
43recnd 7514 . . . 4  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
543ad2ant1 964 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  (
Re `  A )  e.  CC )
6 simp1 943 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  A  e.  CC )
7 recn 7473 . . . . 5  |-  ( B  e.  RR  ->  B  e.  CC )
87anim1i 333 . . . 4  |-  ( ( B  e.  RR  /\  B #  0 )  ->  ( B  e.  CC  /\  B #  0 ) )
983adant1 961 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  ( B  e.  CC  /\  B #  0 ) )
10 mulcanap 8132 . . 3  |-  ( ( ( Re `  A
)  e.  CC  /\  A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  -> 
( ( B  x.  ( Re `  A ) )  =  ( B  x.  A )  <->  ( Re `  A )  =  A ) )
115, 6, 9, 10syl3anc 1174 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  (
( B  x.  (
Re `  A )
)  =  ( B  x.  A )  <->  ( Re `  A )  =  A ) )
127adantr 270 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  B  e.  CC )
134adantl 271 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( Re `  A
)  e.  CC )
14 ax-icn 7438 . . . . . . . . . . . 12  |-  _i  e.  CC
15 imcl 10284 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
1615recnd 7514 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
17 mulcl 7467 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
1814, 16, 17sylancr 405 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
1918adantl 271 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( _i  x.  (
Im `  A )
)  e.  CC )
2012, 13, 19adddid 7510 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( B  x.  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( B  x.  ( Re
`  A ) )  +  ( B  x.  ( _i  x.  (
Im `  A )
) ) ) )
21 replim 10289 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
2221adantl 271 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  A  =  ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )
2322oveq2d 5668 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( B  x.  A
)  =  ( B  x.  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) ) )
24 mul12 7609 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  B  e.  CC  /\  (
Im `  A )  e.  CC )  ->  (
_i  x.  ( B  x.  ( Im `  A
) ) )  =  ( B  x.  (
_i  x.  ( Im `  A ) ) ) )
2514, 24mp3an1 1260 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  ( B  x.  ( Im `  A ) ) )  =  ( B  x.  ( _i  x.  (
Im `  A )
) ) )
267, 16, 25syl2an 283 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( _i  x.  ( B  x.  ( Im `  A ) ) )  =  ( B  x.  ( _i  x.  (
Im `  A )
) ) )
2726oveq2d 5668 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( ( B  x.  ( Re `  A ) )  +  ( _i  x.  ( B  x.  ( Im `  A ) ) ) )  =  ( ( B  x.  ( Re `  A ) )  +  ( B  x.  ( _i  x.  ( Im `  A ) ) ) ) )
2820, 23, 273eqtr4d 2130 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( B  x.  A
)  =  ( ( B  x.  ( Re
`  A ) )  +  ( _i  x.  ( B  x.  (
Im `  A )
) ) ) )
2928fveq2d 5309 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( Re `  ( B  x.  A )
)  =  ( Re
`  ( ( B  x.  ( Re `  A ) )  +  ( _i  x.  ( B  x.  ( Im `  A ) ) ) ) ) )
30 remulcl 7468 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  ( Re `  A )  e.  RR )  -> 
( B  x.  (
Re `  A )
)  e.  RR )
313, 30sylan2 280 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( B  x.  (
Re `  A )
)  e.  RR )
32 remulcl 7468 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  ( Im `  A )  e.  RR )  -> 
( B  x.  (
Im `  A )
)  e.  RR )
3315, 32sylan2 280 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( B  x.  (
Im `  A )
)  e.  RR )
34 crre 10287 . . . . . . . 8  |-  ( ( ( B  x.  (
Re `  A )
)  e.  RR  /\  ( B  x.  (
Im `  A )
)  e.  RR )  ->  ( Re `  ( ( B  x.  ( Re `  A ) )  +  ( _i  x.  ( B  x.  ( Im `  A ) ) ) ) )  =  ( B  x.  ( Re `  A ) ) )
3531, 33, 34syl2anc 403 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( Re `  (
( B  x.  (
Re `  A )
)  +  ( _i  x.  ( B  x.  ( Im `  A ) ) ) ) )  =  ( B  x.  ( Re `  A ) ) )
3629, 35eqtr2d 2121 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( B  x.  (
Re `  A )
)  =  ( Re
`  ( B  x.  A ) ) )
3736eqeq1d 2096 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( ( B  x.  ( Re `  A ) )  =  ( B  x.  A )  <->  ( Re `  ( B  x.  A
) )  =  ( B  x.  A ) ) )
38 mulcl 7467 . . . . . . 7  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( B  x.  A
)  e.  CC )
397, 38sylan 277 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( B  x.  A
)  e.  CC )
40 rereb 10293 . . . . . 6  |-  ( ( B  x.  A )  e.  CC  ->  (
( B  x.  A
)  e.  RR  <->  ( Re `  ( B  x.  A
) )  =  ( B  x.  A ) ) )
4139, 40syl 14 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( ( B  x.  A )  e.  RR  <->  ( Re `  ( B  x.  A ) )  =  ( B  x.  A ) ) )
4237, 41bitr4d 189 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( ( B  x.  ( Re `  A ) )  =  ( B  x.  A )  <->  ( B  x.  A )  e.  RR ) )
4342ancoms 264 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR )  ->  ( ( B  x.  ( Re `  A ) )  =  ( B  x.  A )  <->  ( B  x.  A )  e.  RR ) )
44433adant3 963 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  (
( B  x.  (
Re `  A )
)  =  ( B  x.  A )  <->  ( B  x.  A )  e.  RR ) )
452, 11, 443bitr2d 214 1  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  ( A  e.  RR  <->  ( B  x.  A )  e.  RR ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 924    = wceq 1289    e. wcel 1438   class class class wbr 3845   ` cfv 5015  (class class class)co 5652   CCcc 7346   RRcr 7347   0cc0 7348   _ici 7350    + caddc 7351    x. cmul 7353   # cap 8056   Recre 10270   Imcim 10271
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-mulrcl 7442  ax-addcom 7443  ax-mulcom 7444  ax-addass 7445  ax-mulass 7446  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-1rid 7450  ax-0id 7451  ax-rnegex 7452  ax-precex 7453  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-apti 7458  ax-pre-ltadd 7459  ax-pre-mulgt0 7460  ax-pre-mulext 7461
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-po 4123  df-iso 4124  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-reap 8050  df-ap 8057  df-div 8138  df-2 8479  df-cj 10272  df-re 10273  df-im 10274
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator