ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulreap Unicode version

Theorem mulreap 10828
Description: A product with a real multiplier apart from zero is real iff the multiplicand is real. (Contributed by Jim Kingdon, 14-Jun-2020.)
Assertion
Ref Expression
mulreap  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  ( A  e.  RR  <->  ( B  x.  A )  e.  RR ) )

Proof of Theorem mulreap
StepHypRef Expression
1 rereb 10827 . . 3  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Re `  A )  =  A ) )
213ad2ant1 1013 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  ( A  e.  RR  <->  ( Re `  A )  =  A ) )
3 recl 10817 . . . . 5  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
43recnd 7948 . . . 4  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
543ad2ant1 1013 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  (
Re `  A )  e.  CC )
6 simp1 992 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  A  e.  CC )
7 recn 7907 . . . . 5  |-  ( B  e.  RR  ->  B  e.  CC )
87anim1i 338 . . . 4  |-  ( ( B  e.  RR  /\  B #  0 )  ->  ( B  e.  CC  /\  B #  0 ) )
983adant1 1010 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  ( B  e.  CC  /\  B #  0 ) )
10 mulcanap 8583 . . 3  |-  ( ( ( Re `  A
)  e.  CC  /\  A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  -> 
( ( B  x.  ( Re `  A ) )  =  ( B  x.  A )  <->  ( Re `  A )  =  A ) )
115, 6, 9, 10syl3anc 1233 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  (
( B  x.  (
Re `  A )
)  =  ( B  x.  A )  <->  ( Re `  A )  =  A ) )
127adantr 274 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  B  e.  CC )
134adantl 275 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( Re `  A
)  e.  CC )
14 ax-icn 7869 . . . . . . . . . . . 12  |-  _i  e.  CC
15 imcl 10818 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
1615recnd 7948 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
17 mulcl 7901 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
1814, 16, 17sylancr 412 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
1918adantl 275 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( _i  x.  (
Im `  A )
)  e.  CC )
2012, 13, 19adddid 7944 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( B  x.  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( B  x.  ( Re
`  A ) )  +  ( B  x.  ( _i  x.  (
Im `  A )
) ) ) )
21 replim 10823 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
2221adantl 275 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  A  =  ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )
2322oveq2d 5869 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( B  x.  A
)  =  ( B  x.  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) ) )
24 mul12 8048 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  B  e.  CC  /\  (
Im `  A )  e.  CC )  ->  (
_i  x.  ( B  x.  ( Im `  A
) ) )  =  ( B  x.  (
_i  x.  ( Im `  A ) ) ) )
2514, 24mp3an1 1319 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  ( B  x.  ( Im `  A ) ) )  =  ( B  x.  ( _i  x.  (
Im `  A )
) ) )
267, 16, 25syl2an 287 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( _i  x.  ( B  x.  ( Im `  A ) ) )  =  ( B  x.  ( _i  x.  (
Im `  A )
) ) )
2726oveq2d 5869 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( ( B  x.  ( Re `  A ) )  +  ( _i  x.  ( B  x.  ( Im `  A ) ) ) )  =  ( ( B  x.  ( Re `  A ) )  +  ( B  x.  ( _i  x.  ( Im `  A ) ) ) ) )
2820, 23, 273eqtr4d 2213 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( B  x.  A
)  =  ( ( B  x.  ( Re
`  A ) )  +  ( _i  x.  ( B  x.  (
Im `  A )
) ) ) )
2928fveq2d 5500 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( Re `  ( B  x.  A )
)  =  ( Re
`  ( ( B  x.  ( Re `  A ) )  +  ( _i  x.  ( B  x.  ( Im `  A ) ) ) ) ) )
30 remulcl 7902 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  ( Re `  A )  e.  RR )  -> 
( B  x.  (
Re `  A )
)  e.  RR )
313, 30sylan2 284 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( B  x.  (
Re `  A )
)  e.  RR )
32 remulcl 7902 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  ( Im `  A )  e.  RR )  -> 
( B  x.  (
Im `  A )
)  e.  RR )
3315, 32sylan2 284 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( B  x.  (
Im `  A )
)  e.  RR )
34 crre 10821 . . . . . . . 8  |-  ( ( ( B  x.  (
Re `  A )
)  e.  RR  /\  ( B  x.  (
Im `  A )
)  e.  RR )  ->  ( Re `  ( ( B  x.  ( Re `  A ) )  +  ( _i  x.  ( B  x.  ( Im `  A ) ) ) ) )  =  ( B  x.  ( Re `  A ) ) )
3531, 33, 34syl2anc 409 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( Re `  (
( B  x.  (
Re `  A )
)  +  ( _i  x.  ( B  x.  ( Im `  A ) ) ) ) )  =  ( B  x.  ( Re `  A ) ) )
3629, 35eqtr2d 2204 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( B  x.  (
Re `  A )
)  =  ( Re
`  ( B  x.  A ) ) )
3736eqeq1d 2179 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( ( B  x.  ( Re `  A ) )  =  ( B  x.  A )  <->  ( Re `  ( B  x.  A
) )  =  ( B  x.  A ) ) )
38 mulcl 7901 . . . . . . 7  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( B  x.  A
)  e.  CC )
397, 38sylan 281 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( B  x.  A
)  e.  CC )
40 rereb 10827 . . . . . 6  |-  ( ( B  x.  A )  e.  CC  ->  (
( B  x.  A
)  e.  RR  <->  ( Re `  ( B  x.  A
) )  =  ( B  x.  A ) ) )
4139, 40syl 14 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( ( B  x.  A )  e.  RR  <->  ( Re `  ( B  x.  A ) )  =  ( B  x.  A ) ) )
4237, 41bitr4d 190 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  CC )  ->  ( ( B  x.  ( Re `  A ) )  =  ( B  x.  A )  <->  ( B  x.  A )  e.  RR ) )
4342ancoms 266 . . 3  |-  ( ( A  e.  CC  /\  B  e.  RR )  ->  ( ( B  x.  ( Re `  A ) )  =  ( B  x.  A )  <->  ( B  x.  A )  e.  RR ) )
44433adant3 1012 . 2  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  (
( B  x.  (
Re `  A )
)  =  ( B  x.  A )  <->  ( B  x.  A )  e.  RR ) )
452, 11, 443bitr2d 215 1  |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  ( A  e.  RR  <->  ( B  x.  A )  e.  RR ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   _ici 7776    + caddc 7777    x. cmul 7779   # cap 8500   Recre 10804   Imcim 10805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-2 8937  df-cj 10806  df-re 10807  df-im 10808
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator