![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mul12d | Unicode version |
Description: Commutative/associative law that swaps the first two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
addcomd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
mul12d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mul12d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | addcomd.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | mul12d.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | mul12 8103 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 4 | syl3anc 1248 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2170 ax-mulcom 7929 ax-mulass 7931 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-rex 2473 df-v 2753 df-un 3147 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-br 4018 df-iota 5192 df-fv 5238 df-ov 5893 |
This theorem is referenced by: mulreim 8578 divrecap 8662 remullem 10897 cvgratnnlemnexp 11549 cvgratnnlemmn 11550 tanval3ap 11739 sinadd 11761 dvdscmulr 11844 bezoutlemnewy 12014 dvdsmulgcd 12043 lcmgcdlem 12094 cncongr1 12120 prmdiv 12252 tangtx 14642 lgseisenlem2 14834 2sqlem4 14848 |
Copyright terms: Public domain | W3C validator |