| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul12d | Unicode version | ||
| Description: Commutative/associative law that swaps the first two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 |
|
| addcomd.2 |
|
| mul12d.3 |
|
| Ref | Expression |
|---|---|
| mul12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 |
. 2
| |
| 2 | addcomd.2 |
. 2
| |
| 3 | mul12d.3 |
. 2
| |
| 4 | mul12 8221 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-mulcom 8046 ax-mulass 8048 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 |
| This theorem is referenced by: mulreim 8697 divrecap 8781 remullem 11257 cvgratnnlemnexp 11910 cvgratnnlemmn 11911 tanval3ap 12100 sinadd 12122 dvdscmulr 12206 bezoutlemnewy 12392 dvdsmulgcd 12421 lcmgcdlem 12474 cncongr1 12500 prmdiv 12632 tangtx 15385 gausslemma2dlem6 15619 lgseisenlem2 15623 lgseisenlem4 15625 lgsquadlem1 15629 2sqlem4 15670 |
| Copyright terms: Public domain | W3C validator |