| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0addcli | Unicode version | ||
| Description: Closure of addition of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| nn0addcl.1 |
|
| nn0addcl.2 |
|
| Ref | Expression |
|---|---|
| nn0addcli |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0addcl.1 |
. 2
| |
| 2 | nn0addcl.2 |
. 2
| |
| 3 | nn0addcl 9392 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-i2m1 8092 ax-0id 8095 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-iota 5274 df-fv 5322 df-ov 5997 df-inn 9099 df-n0 9358 |
| This theorem is referenced by: numcl 9578 deccl 9580 numsucc 9605 modsubi 12928 |
| Copyright terms: Public domain | W3C validator |