| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0addcli | GIF version | ||
| Description: Closure of addition of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| nn0addcl.1 | ⊢ 𝑀 ∈ ℕ0 |
| nn0addcl.2 | ⊢ 𝑁 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0addcli | ⊢ (𝑀 + 𝑁) ∈ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0addcl.1 | . 2 ⊢ 𝑀 ∈ ℕ0 | |
| 2 | nn0addcl.2 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
| 3 | nn0addcl 9372 | . 2 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝑀 + 𝑁) ∈ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 (class class class)co 5974 + caddc 7970 ℕ0cn0 9337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-sep 4181 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-i2m1 8072 ax-0id 8075 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-iota 5254 df-fv 5302 df-ov 5977 df-inn 9079 df-n0 9338 |
| This theorem is referenced by: numcl 9558 deccl 9560 numsucc 9585 modsubi 12908 |
| Copyright terms: Public domain | W3C validator |