ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0addcli GIF version

Theorem nn0addcli 9339
Description: Closure of addition of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.)
Hypotheses
Ref Expression
nn0addcl.1 𝑀 ∈ ℕ0
nn0addcl.2 𝑁 ∈ ℕ0
Assertion
Ref Expression
nn0addcli (𝑀 + 𝑁) ∈ ℕ0

Proof of Theorem nn0addcli
StepHypRef Expression
1 nn0addcl.1 . 2 𝑀 ∈ ℕ0
2 nn0addcl.2 . 2 𝑁 ∈ ℕ0
3 nn0addcl 9337 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
41, 2, 3mp2an 426 1 (𝑀 + 𝑁) ∈ ℕ0
Colors of variables: wff set class
Syntax hints:  wcel 2177  (class class class)co 5951   + caddc 7935  0cn0 9302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-sep 4166  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0id 8040
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-iota 5237  df-fv 5284  df-ov 5954  df-inn 9044  df-n0 9303
This theorem is referenced by:  numcl  9523  deccl  9525  numsucc  9550  modsubi  12786
  Copyright terms: Public domain W3C validator