ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0addcli GIF version

Theorem nn0addcli 8764
Description: Closure of addition of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.)
Hypotheses
Ref Expression
nn0addcl.1 𝑀 ∈ ℕ0
nn0addcl.2 𝑁 ∈ ℕ0
Assertion
Ref Expression
nn0addcli (𝑀 + 𝑁) ∈ ℕ0

Proof of Theorem nn0addcli
StepHypRef Expression
1 nn0addcl.1 . 2 𝑀 ∈ ℕ0
2 nn0addcl.2 . 2 𝑁 ∈ ℕ0
3 nn0addcl 8762 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
41, 2, 3mp2an 418 1 (𝑀 + 𝑁) ∈ ℕ0
Colors of variables: wff set class
Syntax hints:  wcel 1439  (class class class)co 5666   + caddc 7407  0cn0 8727
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-cnex 7490  ax-resscn 7491  ax-1cn 7492  ax-1re 7493  ax-icn 7494  ax-addcl 7495  ax-addrcl 7496  ax-mulcl 7497  ax-addcom 7499  ax-addass 7501  ax-i2m1 7504  ax-0id 7507
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-br 3852  df-iota 4993  df-fv 5036  df-ov 5669  df-inn 8477  df-n0 8728
This theorem is referenced by:  numcl  8943  deccl  8945  numsucc  8970
  Copyright terms: Public domain W3C validator