![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0addcli | GIF version |
Description: Closure of addition of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
nn0addcl.1 | ⊢ 𝑀 ∈ ℕ0 |
nn0addcl.2 | ⊢ 𝑁 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0addcli | ⊢ (𝑀 + 𝑁) ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0addcl.1 | . 2 ⊢ 𝑀 ∈ ℕ0 | |
2 | nn0addcl.2 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
3 | nn0addcl 9265 | . 2 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0) | |
4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝑀 + 𝑁) ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 (class class class)co 5910 + caddc 7865 ℕ0cn0 9230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7953 ax-resscn 7954 ax-1cn 7955 ax-1re 7956 ax-icn 7957 ax-addcl 7958 ax-addrcl 7959 ax-mulcl 7960 ax-addcom 7962 ax-addass 7964 ax-i2m1 7967 ax-0id 7970 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-iota 5207 df-fv 5254 df-ov 5913 df-inn 8973 df-n0 9231 |
This theorem is referenced by: numcl 9450 deccl 9452 numsucc 9477 |
Copyright terms: Public domain | W3C validator |