ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0addcli GIF version

Theorem nn0addcli 9280
Description: Closure of addition of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.)
Hypotheses
Ref Expression
nn0addcl.1 𝑀 ∈ ℕ0
nn0addcl.2 𝑁 ∈ ℕ0
Assertion
Ref Expression
nn0addcli (𝑀 + 𝑁) ∈ ℕ0

Proof of Theorem nn0addcli
StepHypRef Expression
1 nn0addcl.1 . 2 𝑀 ∈ ℕ0
2 nn0addcl.2 . 2 𝑁 ∈ ℕ0
3 nn0addcl 9278 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
41, 2, 3mp2an 426 1 (𝑀 + 𝑁) ∈ ℕ0
Colors of variables: wff set class
Syntax hints:  wcel 2164  (class class class)co 5919   + caddc 7877  0cn0 9243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4148  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0id 7982
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-iota 5216  df-fv 5263  df-ov 5922  df-inn 8985  df-n0 9244
This theorem is referenced by:  numcl  9463  deccl  9465  numsucc  9490
  Copyright terms: Public domain W3C validator