ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  deccl Unicode version

Theorem deccl 8823
Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
deccl.1  |-  A  e. 
NN0
deccl.2  |-  B  e. 
NN0
Assertion
Ref Expression
deccl  |- ; A B  e.  NN0

Proof of Theorem deccl
StepHypRef Expression
1 df-dec 8810 . 2  |- ; A B  =  ( ( ( 9  +  1 )  x.  A
)  +  B )
2 9nn0 8630 . . . 4  |-  9  e.  NN0
3 1nn0 8622 . . . 4  |-  1  e.  NN0
42, 3nn0addcli 8643 . . 3  |-  ( 9  +  1 )  e. 
NN0
5 deccl.1 . . 3  |-  A  e. 
NN0
6 deccl.2 . . 3  |-  B  e. 
NN0
74, 5, 6numcl 8821 . 2  |-  ( ( ( 9  +  1 )  x.  A )  +  B )  e. 
NN0
81, 7eqeltri 2157 1  |- ; A B  e.  NN0
Colors of variables: wff set class
Syntax hints:    e. wcel 1436  (class class class)co 5613   1c1 7295    + caddc 7297    x. cmul 7299   9c9 8414   NN0cn0 8606  ;cdc 8809
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010  ax-setind 4326  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-addcom 7389  ax-mulcom 7390  ax-addass 7391  ax-mulass 7392  ax-distr 7393  ax-i2m1 7394  ax-1rid 7396  ax-0id 7397  ax-rnegex 7398  ax-cnre 7400
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-br 3821  df-opab 3875  df-id 4094  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-iota 4946  df-fun 4983  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-sub 7599  df-inn 8358  df-2 8416  df-3 8417  df-4 8418  df-5 8419  df-6 8420  df-7 8421  df-8 8422  df-9 8423  df-n0 8607  df-dec 8810
This theorem is referenced by:  10nn0  8826  3declth  8840  3decltc  8841  decleh  8843  sq10  10017  3dvds2dec  10741  1kp2ke3k  11090
  Copyright terms: Public domain W3C validator