ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  deccl Unicode version

Theorem deccl 9400
Description: Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
deccl.1  |-  A  e. 
NN0
deccl.2  |-  B  e. 
NN0
Assertion
Ref Expression
deccl  |- ; A B  e.  NN0

Proof of Theorem deccl
StepHypRef Expression
1 df-dec 9387 . 2  |- ; A B  =  ( ( ( 9  +  1 )  x.  A
)  +  B )
2 9nn0 9202 . . . 4  |-  9  e.  NN0
3 1nn0 9194 . . . 4  |-  1  e.  NN0
42, 3nn0addcli 9215 . . 3  |-  ( 9  +  1 )  e. 
NN0
5 deccl.1 . . 3  |-  A  e. 
NN0
6 deccl.2 . . 3  |-  B  e. 
NN0
74, 5, 6numcl 9398 . 2  |-  ( ( ( 9  +  1 )  x.  A )  +  B )  e. 
NN0
81, 7eqeltri 2250 1  |- ; A B  e.  NN0
Colors of variables: wff set class
Syntax hints:    e. wcel 2148  (class class class)co 5877   1c1 7814    + caddc 7816    x. cmul 7818   9c9 8979   NN0cn0 9178  ;cdc 9386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-sub 8132  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-7 8985  df-8 8986  df-9 8987  df-n0 9179  df-dec 9387
This theorem is referenced by:  10nn0  9403  3declth  9417  3decltc  9418  decleh  9420  sq10  10694  3dvds2dec  11873  1kp2ke3k  14515
  Copyright terms: Public domain W3C validator