ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsucpred GIF version

Theorem nnsucpred 4610
Description: The successor of the precedessor of a nonzero natural number. (Contributed by Jim Kingdon, 31-Jul-2022.)
Assertion
Ref Expression
nnsucpred ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → suc 𝐴 = 𝐴)

Proof of Theorem nnsucpred
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnsuc 4609 . 2 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
2 nnon 4603 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ On)
32ad2antrr 488 . . 3 (((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)) → 𝐴 ∈ On)
4 simprr 531 . . 3 (((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)) → 𝐴 = suc 𝑥)
5 onsucuni2 4557 . . 3 ((𝐴 ∈ On ∧ 𝐴 = suc 𝑥) → suc 𝐴 = 𝐴)
63, 4, 5syl2anc 411 . 2 (((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)) → suc 𝐴 = 𝐴)
71, 6rexlimddv 2597 1 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → suc 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146  wne 2345  c0 3420   cuni 3805  Oncon0 4357  suc csuc 4359  ωcom 4583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-uni 3806  df-int 3841  df-tr 4097  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584
This theorem is referenced by:  nnpredlt  4617  omp1eomlem  7083  nnnninfeq2  7117  nnsf  14313
  Copyright terms: Public domain W3C validator