| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnsucpred | GIF version | ||
| Description: The successor of the precedessor of a nonzero natural number. (Contributed by Jim Kingdon, 31-Jul-2022.) |
| Ref | Expression |
|---|---|
| nnsucpred | ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → suc ∪ 𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsuc 4672 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) | |
| 2 | nnon 4666 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 3 | 2 | ad2antrr 488 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)) → 𝐴 ∈ On) |
| 4 | simprr 531 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)) → 𝐴 = suc 𝑥) | |
| 5 | onsucuni2 4620 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝑥) → suc ∪ 𝐴 = 𝐴) | |
| 6 | 3, 4, 5 | syl2anc 411 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)) → suc ∪ 𝐴 = 𝐴) |
| 7 | 1, 6 | rexlimddv 2629 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → suc ∪ 𝐴 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ∅c0 3464 ∪ cuni 3856 Oncon0 4418 suc csuc 4420 ωcom 4646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3857 df-int 3892 df-tr 4151 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 |
| This theorem is referenced by: nnpredlt 4680 omp1eomlem 7211 nnnninfeq2 7246 nnsf 16083 |
| Copyright terms: Public domain | W3C validator |