ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsucpred GIF version

Theorem nnsucpred 4618
Description: The successor of the precedessor of a nonzero natural number. (Contributed by Jim Kingdon, 31-Jul-2022.)
Assertion
Ref Expression
nnsucpred ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → suc 𝐴 = 𝐴)

Proof of Theorem nnsucpred
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnsuc 4617 . 2 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
2 nnon 4611 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ On)
32ad2antrr 488 . . 3 (((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)) → 𝐴 ∈ On)
4 simprr 531 . . 3 (((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)) → 𝐴 = suc 𝑥)
5 onsucuni2 4565 . . 3 ((𝐴 ∈ On ∧ 𝐴 = suc 𝑥) → suc 𝐴 = 𝐴)
63, 4, 5syl2anc 411 . 2 (((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)) → suc 𝐴 = 𝐴)
71, 6rexlimddv 2599 1 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → suc 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wne 2347  c0 3424   cuni 3811  Oncon0 4365  suc csuc 4367  ωcom 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847  df-tr 4104  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592
This theorem is referenced by:  nnpredlt  4625  omp1eomlem  7095  nnnninfeq2  7129  nnsf  14839
  Copyright terms: Public domain W3C validator