Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnsucpred | GIF version |
Description: The successor of the precedessor of a nonzero natural number. (Contributed by Jim Kingdon, 31-Jul-2022.) |
Ref | Expression |
---|---|
nnsucpred | ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → suc ∪ 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsuc 4609 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) | |
2 | nnon 4603 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
3 | 2 | ad2antrr 488 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)) → 𝐴 ∈ On) |
4 | simprr 531 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)) → 𝐴 = suc 𝑥) | |
5 | onsucuni2 4557 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝑥) → suc ∪ 𝐴 = 𝐴) | |
6 | 3, 4, 5 | syl2anc 411 | . 2 ⊢ (((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)) → suc ∪ 𝐴 = 𝐴) |
7 | 1, 6 | rexlimddv 2597 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → suc ∪ 𝐴 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 ≠ wne 2345 ∅c0 3420 ∪ cuni 3805 Oncon0 4357 suc csuc 4359 ωcom 4583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-int 3841 df-tr 4097 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 |
This theorem is referenced by: nnpredlt 4617 omp1eomlem 7083 nnnninfeq2 7117 nnsf 14313 |
Copyright terms: Public domain | W3C validator |