ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsucpred GIF version

Theorem nnsucpred 4654
Description: The successor of the precedessor of a nonzero natural number. (Contributed by Jim Kingdon, 31-Jul-2022.)
Assertion
Ref Expression
nnsucpred ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → suc 𝐴 = 𝐴)

Proof of Theorem nnsucpred
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnsuc 4653 . 2 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
2 nnon 4647 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ On)
32ad2antrr 488 . . 3 (((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)) → 𝐴 ∈ On)
4 simprr 531 . . 3 (((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)) → 𝐴 = suc 𝑥)
5 onsucuni2 4601 . . 3 ((𝐴 ∈ On ∧ 𝐴 = suc 𝑥) → suc 𝐴 = 𝐴)
63, 4, 5syl2anc 411 . 2 (((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)) → suc 𝐴 = 𝐴)
71, 6rexlimddv 2619 1 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → suc 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wne 2367  c0 3451   cuni 3840  Oncon0 4399  suc csuc 4401  ωcom 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-uni 3841  df-int 3876  df-tr 4133  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628
This theorem is referenced by:  nnpredlt  4661  omp1eomlem  7169  nnnninfeq2  7204  nnsf  15736
  Copyright terms: Public domain W3C validator