ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprssov Unicode version

Theorem oprssov 5786
Description: The value of a member of the domain of a subclass of an operation. (Contributed by NM, 23-Aug-2007.)
Assertion
Ref Expression
oprssov  |-  ( ( ( Fun  F  /\  G  Fn  ( C  X.  D )  /\  G  C_  F )  /\  ( A  e.  C  /\  B  e.  D )
)  ->  ( A F B )  =  ( A G B ) )

Proof of Theorem oprssov
StepHypRef Expression
1 ovres 5784 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A ( F  |`  ( C  X.  D
) ) B )  =  ( A F B ) )
21adantl 271 . 2  |-  ( ( ( Fun  F  /\  G  Fn  ( C  X.  D )  /\  G  C_  F )  /\  ( A  e.  C  /\  B  e.  D )
)  ->  ( A
( F  |`  ( C  X.  D ) ) B )  =  ( A F B ) )
3 fndm 5113 . . . . . . 7  |-  ( G  Fn  ( C  X.  D )  ->  dom  G  =  ( C  X.  D ) )
43reseq2d 4713 . . . . . 6  |-  ( G  Fn  ( C  X.  D )  ->  ( F  |`  dom  G )  =  ( F  |`  ( C  X.  D
) ) )
543ad2ant2 965 . . . . 5  |-  ( ( Fun  F  /\  G  Fn  ( C  X.  D
)  /\  G  C_  F
)  ->  ( F  |` 
dom  G )  =  ( F  |`  ( C  X.  D ) ) )
6 funssres 5056 . . . . . 6  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )
763adant2 962 . . . . 5  |-  ( ( Fun  F  /\  G  Fn  ( C  X.  D
)  /\  G  C_  F
)  ->  ( F  |` 
dom  G )  =  G )
85, 7eqtr3d 2122 . . . 4  |-  ( ( Fun  F  /\  G  Fn  ( C  X.  D
)  /\  G  C_  F
)  ->  ( F  |`  ( C  X.  D
) )  =  G )
98oveqd 5669 . . 3  |-  ( ( Fun  F  /\  G  Fn  ( C  X.  D
)  /\  G  C_  F
)  ->  ( A
( F  |`  ( C  X.  D ) ) B )  =  ( A G B ) )
109adantr 270 . 2  |-  ( ( ( Fun  F  /\  G  Fn  ( C  X.  D )  /\  G  C_  F )  /\  ( A  e.  C  /\  B  e.  D )
)  ->  ( A
( F  |`  ( C  X.  D ) ) B )  =  ( A G B ) )
112, 10eqtr3d 2122 1  |-  ( ( ( Fun  F  /\  G  Fn  ( C  X.  D )  /\  G  C_  F )  /\  ( A  e.  C  /\  B  e.  D )
)  ->  ( A F B )  =  ( A G B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 924    = wceq 1289    e. wcel 1438    C_ wss 2999    X. cxp 4436   dom cdm 4438    |` cres 4440   Fun wfun 5009    Fn wfn 5010  (class class class)co 5652
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-res 4450  df-iota 4980  df-fun 5017  df-fn 5018  df-fv 5023  df-ov 5655
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator