ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprssov Unicode version

Theorem oprssov 6087
Description: The value of a member of the domain of a subclass of an operation. (Contributed by NM, 23-Aug-2007.)
Assertion
Ref Expression
oprssov  |-  ( ( ( Fun  F  /\  G  Fn  ( C  X.  D )  /\  G  C_  F )  /\  ( A  e.  C  /\  B  e.  D )
)  ->  ( A F B )  =  ( A G B ) )

Proof of Theorem oprssov
StepHypRef Expression
1 ovres 6085 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A ( F  |`  ( C  X.  D
) ) B )  =  ( A F B ) )
21adantl 277 . 2  |-  ( ( ( Fun  F  /\  G  Fn  ( C  X.  D )  /\  G  C_  F )  /\  ( A  e.  C  /\  B  e.  D )
)  ->  ( A
( F  |`  ( C  X.  D ) ) B )  =  ( A F B ) )
3 fndm 5372 . . . . . . 7  |-  ( G  Fn  ( C  X.  D )  ->  dom  G  =  ( C  X.  D ) )
43reseq2d 4958 . . . . . 6  |-  ( G  Fn  ( C  X.  D )  ->  ( F  |`  dom  G )  =  ( F  |`  ( C  X.  D
) ) )
543ad2ant2 1021 . . . . 5  |-  ( ( Fun  F  /\  G  Fn  ( C  X.  D
)  /\  G  C_  F
)  ->  ( F  |` 
dom  G )  =  ( F  |`  ( C  X.  D ) ) )
6 funssres 5312 . . . . . 6  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )
763adant2 1018 . . . . 5  |-  ( ( Fun  F  /\  G  Fn  ( C  X.  D
)  /\  G  C_  F
)  ->  ( F  |` 
dom  G )  =  G )
85, 7eqtr3d 2239 . . . 4  |-  ( ( Fun  F  /\  G  Fn  ( C  X.  D
)  /\  G  C_  F
)  ->  ( F  |`  ( C  X.  D
) )  =  G )
98oveqd 5960 . . 3  |-  ( ( Fun  F  /\  G  Fn  ( C  X.  D
)  /\  G  C_  F
)  ->  ( A
( F  |`  ( C  X.  D ) ) B )  =  ( A G B ) )
109adantr 276 . 2  |-  ( ( ( Fun  F  /\  G  Fn  ( C  X.  D )  /\  G  C_  F )  /\  ( A  e.  C  /\  B  e.  D )
)  ->  ( A
( F  |`  ( C  X.  D ) ) B )  =  ( A G B ) )
112, 10eqtr3d 2239 1  |-  ( ( ( Fun  F  /\  G  Fn  ( C  X.  D )  /\  G  C_  F )  /\  ( A  e.  C  /\  B  e.  D )
)  ->  ( A F B )  =  ( A G B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1372    e. wcel 2175    C_ wss 3165    X. cxp 4672   dom cdm 4674    |` cres 4676   Fun wfun 5264    Fn wfn 5265  (class class class)co 5943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-ov 5946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator