ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprssov Unicode version

Theorem oprssov 6065
Description: The value of a member of the domain of a subclass of an operation. (Contributed by NM, 23-Aug-2007.)
Assertion
Ref Expression
oprssov  |-  ( ( ( Fun  F  /\  G  Fn  ( C  X.  D )  /\  G  C_  F )  /\  ( A  e.  C  /\  B  e.  D )
)  ->  ( A F B )  =  ( A G B ) )

Proof of Theorem oprssov
StepHypRef Expression
1 ovres 6063 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A ( F  |`  ( C  X.  D
) ) B )  =  ( A F B ) )
21adantl 277 . 2  |-  ( ( ( Fun  F  /\  G  Fn  ( C  X.  D )  /\  G  C_  F )  /\  ( A  e.  C  /\  B  e.  D )
)  ->  ( A
( F  |`  ( C  X.  D ) ) B )  =  ( A F B ) )
3 fndm 5357 . . . . . . 7  |-  ( G  Fn  ( C  X.  D )  ->  dom  G  =  ( C  X.  D ) )
43reseq2d 4946 . . . . . 6  |-  ( G  Fn  ( C  X.  D )  ->  ( F  |`  dom  G )  =  ( F  |`  ( C  X.  D
) ) )
543ad2ant2 1021 . . . . 5  |-  ( ( Fun  F  /\  G  Fn  ( C  X.  D
)  /\  G  C_  F
)  ->  ( F  |` 
dom  G )  =  ( F  |`  ( C  X.  D ) ) )
6 funssres 5300 . . . . . 6  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )
763adant2 1018 . . . . 5  |-  ( ( Fun  F  /\  G  Fn  ( C  X.  D
)  /\  G  C_  F
)  ->  ( F  |` 
dom  G )  =  G )
85, 7eqtr3d 2231 . . . 4  |-  ( ( Fun  F  /\  G  Fn  ( C  X.  D
)  /\  G  C_  F
)  ->  ( F  |`  ( C  X.  D
) )  =  G )
98oveqd 5939 . . 3  |-  ( ( Fun  F  /\  G  Fn  ( C  X.  D
)  /\  G  C_  F
)  ->  ( A
( F  |`  ( C  X.  D ) ) B )  =  ( A G B ) )
109adantr 276 . 2  |-  ( ( ( Fun  F  /\  G  Fn  ( C  X.  D )  /\  G  C_  F )  /\  ( A  e.  C  /\  B  e.  D )
)  ->  ( A
( F  |`  ( C  X.  D ) ) B )  =  ( A G B ) )
112, 10eqtr3d 2231 1  |-  ( ( ( Fun  F  /\  G  Fn  ( C  X.  D )  /\  G  C_  F )  /\  ( A  e.  C  /\  B  e.  D )
)  ->  ( A F B )  =  ( A G B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167    C_ wss 3157    X. cxp 4661   dom cdm 4663    |` cres 4665   Fun wfun 5252    Fn wfn 5253  (class class class)co 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator