ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovresd Unicode version

Theorem ovresd 6068
Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
ovresd.1  |-  ( ph  ->  A  e.  X )
ovresd.2  |-  ( ph  ->  B  e.  X )
Assertion
Ref Expression
ovresd  |-  ( ph  ->  ( A ( D  |`  ( X  X.  X
) ) B )  =  ( A D B ) )

Proof of Theorem ovresd
StepHypRef Expression
1 ovresd.1 . 2  |-  ( ph  ->  A  e.  X )
2 ovresd.2 . 2  |-  ( ph  ->  B  e.  X )
3 ovres 6067 . 2  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A ( D  |`  ( X  X.  X
) ) B )  =  ( A D B ) )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  ( A ( D  |`  ( X  X.  X
) ) B )  =  ( A D B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167    X. cxp 4662    |` cres 4666  (class class class)co 5925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-res 4676  df-iota 5220  df-fv 5267  df-ov 5928
This theorem is referenced by:  psmetres2  14653  xmetres2  14699  xmssym  14789  xmstri2  14790  mstri2  14791  xmstri  14792  mstri  14793  xmstri3  14794  mstri3  14795  msrtri  14796  limcimolemlt  14984  cnplimcim  14987  cnplimclemr  14989  limccnpcntop  14995  limccnp2lem  14996
  Copyright terms: Public domain W3C validator