ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovresd Unicode version

Theorem ovresd 5993
Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
ovresd.1  |-  ( ph  ->  A  e.  X )
ovresd.2  |-  ( ph  ->  B  e.  X )
Assertion
Ref Expression
ovresd  |-  ( ph  ->  ( A ( D  |`  ( X  X.  X
) ) B )  =  ( A D B ) )

Proof of Theorem ovresd
StepHypRef Expression
1 ovresd.1 . 2  |-  ( ph  ->  A  e.  X )
2 ovresd.2 . 2  |-  ( ph  ->  B  e.  X )
3 ovres 5992 . 2  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A ( D  |`  ( X  X.  X
) ) B )  =  ( A D B ) )
41, 2, 3syl2anc 409 1  |-  ( ph  ->  ( A ( D  |`  ( X  X.  X
) ) B )  =  ( A D B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141    X. cxp 4609    |` cres 4613  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-res 4623  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  psmetres2  13127  xmetres2  13173  xmssym  13263  xmstri2  13264  mstri2  13265  xmstri  13266  mstri  13267  xmstri3  13268  mstri3  13269  msrtri  13270  limcimolemlt  13427  cnplimcim  13430  cnplimclemr  13432  limccnpcntop  13438  limccnp2lem  13439
  Copyright terms: Public domain W3C validator