ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovresd Unicode version

Theorem ovresd 6087
Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
ovresd.1  |-  ( ph  ->  A  e.  X )
ovresd.2  |-  ( ph  ->  B  e.  X )
Assertion
Ref Expression
ovresd  |-  ( ph  ->  ( A ( D  |`  ( X  X.  X
) ) B )  =  ( A D B ) )

Proof of Theorem ovresd
StepHypRef Expression
1 ovresd.1 . 2  |-  ( ph  ->  A  e.  X )
2 ovresd.2 . 2  |-  ( ph  ->  B  e.  X )
3 ovres 6086 . 2  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A ( D  |`  ( X  X.  X
) ) B )  =  ( A D B ) )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  ( A ( D  |`  ( X  X.  X
) ) B )  =  ( A D B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176    X. cxp 4673    |` cres 4677  (class class class)co 5944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-res 4687  df-iota 5232  df-fv 5279  df-ov 5947
This theorem is referenced by:  psmetres2  14805  xmetres2  14851  xmssym  14941  xmstri2  14942  mstri2  14943  xmstri  14944  mstri  14945  xmstri3  14946  mstri3  14947  msrtri  14948  limcimolemlt  15136  cnplimcim  15139  cnplimclemr  15141  limccnpcntop  15147  limccnp2lem  15148
  Copyright terms: Public domain W3C validator