ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fovcdm Unicode version

Theorem fovcdm 6053
Description: An operation's value belongs to its codomain. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
fovcdm  |-  ( ( F : ( R  X.  S ) --> C  /\  A  e.  R  /\  B  e.  S
)  ->  ( A F B )  e.  C
)

Proof of Theorem fovcdm
StepHypRef Expression
1 opelxpi 4687 . . 3  |-  ( ( A  e.  R  /\  B  e.  S )  -> 
<. A ,  B >.  e.  ( R  X.  S
) )
2 df-ov 5913 . . . 4  |-  ( A F B )  =  ( F `  <. A ,  B >. )
3 ffvelcdm 5683 . . . 4  |-  ( ( F : ( R  X.  S ) --> C  /\  <. A ,  B >.  e.  ( R  X.  S ) )  -> 
( F `  <. A ,  B >. )  e.  C )
42, 3eqeltrid 2280 . . 3  |-  ( ( F : ( R  X.  S ) --> C  /\  <. A ,  B >.  e.  ( R  X.  S ) )  -> 
( A F B )  e.  C )
51, 4sylan2 286 . 2  |-  ( ( F : ( R  X.  S ) --> C  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( A F B )  e.  C )
653impb 1201 1  |-  ( ( F : ( R  X.  S ) --> C  /\  A  e.  R  /\  B  e.  S
)  ->  ( A F B )  e.  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2164   <.cop 3621    X. cxp 4653   -->wf 5242   ` cfv 5246  (class class class)co 5910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4322  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-fv 5254  df-ov 5913
This theorem is referenced by:  fovcdmda  6054  fovcdmd  6055  ovmpoelrn  6251  mapxpen  6895  grpsubcl  13142  imasgrp2  13170  imasring  13544  psmetcl  14471  xmetcl  14497  metcl  14498  blssm  14566
  Copyright terms: Public domain W3C validator