ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprssov GIF version

Theorem oprssov 5920
Description: The value of a member of the domain of a subclass of an operation. (Contributed by NM, 23-Aug-2007.)
Assertion
Ref Expression
oprssov (((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵))

Proof of Theorem oprssov
StepHypRef Expression
1 ovres 5918 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵))
21adantl 275 . 2 (((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵))
3 fndm 5230 . . . . . . 7 (𝐺 Fn (𝐶 × 𝐷) → dom 𝐺 = (𝐶 × 𝐷))
43reseq2d 4827 . . . . . 6 (𝐺 Fn (𝐶 × 𝐷) → (𝐹 ↾ dom 𝐺) = (𝐹 ↾ (𝐶 × 𝐷)))
543ad2ant2 1004 . . . . 5 ((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) → (𝐹 ↾ dom 𝐺) = (𝐹 ↾ (𝐶 × 𝐷)))
6 funssres 5173 . . . . . 6 ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
763adant2 1001 . . . . 5 ((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
85, 7eqtr3d 2175 . . . 4 ((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) → (𝐹 ↾ (𝐶 × 𝐷)) = 𝐺)
98oveqd 5799 . . 3 ((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐺𝐵))
109adantr 274 . 2 (((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐺𝐵))
112, 10eqtr3d 2175 1 (((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963   = wceq 1332  wcel 1481  wss 3076   × cxp 4545  dom cdm 4547  cres 4549  Fun wfun 5125   Fn wfn 5126  (class class class)co 5782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-res 4559  df-iota 5096  df-fun 5133  df-fn 5134  df-fv 5139  df-ov 5785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator