Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oprssov | GIF version |
Description: The value of a member of the domain of a subclass of an operation. (Contributed by NM, 23-Aug-2007.) |
Ref | Expression |
---|---|
oprssov | ⊢ (((Fun 𝐹 ∧ 𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺 ⊆ 𝐹) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovres 5981 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) | |
2 | 1 | adantl 275 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺 ⊆ 𝐹) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
3 | fndm 5287 | . . . . . . 7 ⊢ (𝐺 Fn (𝐶 × 𝐷) → dom 𝐺 = (𝐶 × 𝐷)) | |
4 | 3 | reseq2d 4884 | . . . . . 6 ⊢ (𝐺 Fn (𝐶 × 𝐷) → (𝐹 ↾ dom 𝐺) = (𝐹 ↾ (𝐶 × 𝐷))) |
5 | 4 | 3ad2ant2 1009 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = (𝐹 ↾ (𝐶 × 𝐷))) |
6 | funssres 5230 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) | |
7 | 6 | 3adant2 1006 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) |
8 | 5, 7 | eqtr3d 2200 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ (𝐶 × 𝐷)) = 𝐺) |
9 | 8 | oveqd 5859 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺 ⊆ 𝐹) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐺𝐵)) |
10 | 9 | adantr 274 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺 ⊆ 𝐹) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐺𝐵)) |
11 | 2, 10 | eqtr3d 2200 | 1 ⊢ (((Fun 𝐹 ∧ 𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺 ⊆ 𝐹) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 ⊆ wss 3116 × cxp 4602 dom cdm 4604 ↾ cres 4606 Fun wfun 5182 Fn wfn 5183 (class class class)co 5842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-ov 5845 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |