ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprssov GIF version

Theorem oprssov 5994
Description: The value of a member of the domain of a subclass of an operation. (Contributed by NM, 23-Aug-2007.)
Assertion
Ref Expression
oprssov (((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵))

Proof of Theorem oprssov
StepHypRef Expression
1 ovres 5992 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵))
21adantl 275 . 2 (((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵))
3 fndm 5297 . . . . . . 7 (𝐺 Fn (𝐶 × 𝐷) → dom 𝐺 = (𝐶 × 𝐷))
43reseq2d 4891 . . . . . 6 (𝐺 Fn (𝐶 × 𝐷) → (𝐹 ↾ dom 𝐺) = (𝐹 ↾ (𝐶 × 𝐷)))
543ad2ant2 1014 . . . . 5 ((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) → (𝐹 ↾ dom 𝐺) = (𝐹 ↾ (𝐶 × 𝐷)))
6 funssres 5240 . . . . . 6 ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
763adant2 1011 . . . . 5 ((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
85, 7eqtr3d 2205 . . . 4 ((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) → (𝐹 ↾ (𝐶 × 𝐷)) = 𝐺)
98oveqd 5870 . . 3 ((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐺𝐵))
109adantr 274 . 2 (((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐺𝐵))
112, 10eqtr3d 2205 1 (((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  wss 3121   × cxp 4609  dom cdm 4611  cres 4613  Fun wfun 5192   Fn wfn 5193  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-ov 5856
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator