ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opthg Unicode version

Theorem opthg 4300
Description: Ordered pair theorem.  C and  D are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opthg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  =  <. C ,  D >.  <-> 
( A  =  C  /\  B  =  D ) ) )

Proof of Theorem opthg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3833 . . . 4  |-  ( x  =  A  ->  <. x ,  y >.  =  <. A ,  y >. )
21eqeq1d 2216 . . 3  |-  ( x  =  A  ->  ( <. x ,  y >.  =  <. C ,  D >.  <->  <. A ,  y >.  =  <. C ,  D >. ) )
3 eqeq1 2214 . . . 4  |-  ( x  =  A  ->  (
x  =  C  <->  A  =  C ) )
43anbi1d 465 . . 3  |-  ( x  =  A  ->  (
( x  =  C  /\  y  =  D )  <->  ( A  =  C  /\  y  =  D ) ) )
52, 4bibi12d 235 . 2  |-  ( x  =  A  ->  (
( <. x ,  y
>.  =  <. C ,  D >. 
<->  ( x  =  C  /\  y  =  D ) )  <->  ( <. A ,  y >.  =  <. C ,  D >.  <->  ( A  =  C  /\  y  =  D ) ) ) )
6 opeq2 3834 . . . 4  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
76eqeq1d 2216 . . 3  |-  ( y  =  B  ->  ( <. A ,  y >.  =  <. C ,  D >.  <->  <. A ,  B >.  = 
<. C ,  D >. ) )
8 eqeq1 2214 . . . 4  |-  ( y  =  B  ->  (
y  =  D  <->  B  =  D ) )
98anbi2d 464 . . 3  |-  ( y  =  B  ->  (
( A  =  C  /\  y  =  D )  <->  ( A  =  C  /\  B  =  D ) ) )
107, 9bibi12d 235 . 2  |-  ( y  =  B  ->  (
( <. A ,  y
>.  =  <. C ,  D >. 
<->  ( A  =  C  /\  y  =  D ) )  <->  ( <. A ,  B >.  =  <. C ,  D >.  <->  ( A  =  C  /\  B  =  D ) ) ) )
11 vex 2779 . . 3  |-  x  e. 
_V
12 vex 2779 . . 3  |-  y  e. 
_V
1311, 12opth 4299 . 2  |-  ( <.
x ,  y >.  =  <. C ,  D >.  <-> 
( x  =  C  /\  y  =  D ) )
145, 10, 13vtocl2g 2842 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  =  <. C ,  D >.  <-> 
( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   <.cop 3646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652
This theorem is referenced by:  opthg2  4301  xpopth  6285  eqop  6286  inl11  7193  preqlu  7620  cauappcvgprlemladd  7806  elrealeu  7977  s111  11123  qnumdenbi  12629  crth  12661  imasaddfnlemg  13261
  Copyright terms: Public domain W3C validator