ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opthg Unicode version

Theorem opthg 4283
Description: Ordered pair theorem.  C and  D are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opthg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  =  <. C ,  D >.  <-> 
( A  =  C  /\  B  =  D ) ) )

Proof of Theorem opthg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3819 . . . 4  |-  ( x  =  A  ->  <. x ,  y >.  =  <. A ,  y >. )
21eqeq1d 2214 . . 3  |-  ( x  =  A  ->  ( <. x ,  y >.  =  <. C ,  D >.  <->  <. A ,  y >.  =  <. C ,  D >. ) )
3 eqeq1 2212 . . . 4  |-  ( x  =  A  ->  (
x  =  C  <->  A  =  C ) )
43anbi1d 465 . . 3  |-  ( x  =  A  ->  (
( x  =  C  /\  y  =  D )  <->  ( A  =  C  /\  y  =  D ) ) )
52, 4bibi12d 235 . 2  |-  ( x  =  A  ->  (
( <. x ,  y
>.  =  <. C ,  D >. 
<->  ( x  =  C  /\  y  =  D ) )  <->  ( <. A ,  y >.  =  <. C ,  D >.  <->  ( A  =  C  /\  y  =  D ) ) ) )
6 opeq2 3820 . . . 4  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
76eqeq1d 2214 . . 3  |-  ( y  =  B  ->  ( <. A ,  y >.  =  <. C ,  D >.  <->  <. A ,  B >.  = 
<. C ,  D >. ) )
8 eqeq1 2212 . . . 4  |-  ( y  =  B  ->  (
y  =  D  <->  B  =  D ) )
98anbi2d 464 . . 3  |-  ( y  =  B  ->  (
( A  =  C  /\  y  =  D )  <->  ( A  =  C  /\  B  =  D ) ) )
107, 9bibi12d 235 . 2  |-  ( y  =  B  ->  (
( <. A ,  y
>.  =  <. C ,  D >. 
<->  ( A  =  C  /\  y  =  D ) )  <->  ( <. A ,  B >.  =  <. C ,  D >.  <->  ( A  =  C  /\  B  =  D ) ) ) )
11 vex 2775 . . 3  |-  x  e. 
_V
12 vex 2775 . . 3  |-  y  e. 
_V
1311, 12opth 4282 . 2  |-  ( <.
x ,  y >.  =  <. C ,  D >.  <-> 
( x  =  C  /\  y  =  D ) )
145, 10, 13vtocl2g 2837 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  =  <. C ,  D >.  <-> 
( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   <.cop 3636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642
This theorem is referenced by:  opthg2  4284  xpopth  6264  eqop  6265  inl11  7169  preqlu  7587  cauappcvgprlemladd  7773  elrealeu  7944  s111  11088  qnumdenbi  12547  crth  12579  imasaddfnlemg  13179
  Copyright terms: Public domain W3C validator