ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpopth Unicode version

Theorem xpopth 6144
Description: An ordered pair theorem for members of cross products. (Contributed by NM, 20-Jun-2007.)
Assertion
Ref Expression
xpopth  |-  ( ( A  e.  ( C  X.  D )  /\  B  e.  ( R  X.  S ) )  -> 
( ( ( 1st `  A )  =  ( 1st `  B )  /\  ( 2nd `  A
)  =  ( 2nd `  B ) )  <->  A  =  B ) )

Proof of Theorem xpopth
StepHypRef Expression
1 1st2nd2 6143 . . 3  |-  ( A  e.  ( C  X.  D )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
2 1st2nd2 6143 . . 3  |-  ( B  e.  ( R  X.  S )  ->  B  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
31, 2eqeqan12d 2181 . 2  |-  ( ( A  e.  ( C  X.  D )  /\  B  e.  ( R  X.  S ) )  -> 
( A  =  B  <->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. ) )
4 1stexg 6135 . . . 4  |-  ( A  e.  ( C  X.  D )  ->  ( 1st `  A )  e. 
_V )
5 2ndexg 6136 . . . 4  |-  ( A  e.  ( C  X.  D )  ->  ( 2nd `  A )  e. 
_V )
6 opthg 4216 . . . 4  |-  ( ( ( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V )  -> 
( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
74, 5, 6syl2anc 409 . . 3  |-  ( A  e.  ( C  X.  D )  ->  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
87adantr 274 . 2  |-  ( ( A  e.  ( C  X.  D )  /\  B  e.  ( R  X.  S ) )  -> 
( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
93, 8bitr2d 188 1  |-  ( ( A  e.  ( C  X.  D )  /\  B  e.  ( R  X.  S ) )  -> 
( ( ( 1st `  A )  =  ( 1st `  B )  /\  ( 2nd `  A
)  =  ( 2nd `  B ) )  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726   <.cop 3579    X. cxp 4602   ` cfv 5188   1stc1st 6106   2ndc2nd 6107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196  df-1st 6108  df-2nd 6109
This theorem is referenced by:  xmetxp  13147
  Copyright terms: Public domain W3C validator