ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpopth Unicode version

Theorem xpopth 6190
Description: An ordered pair theorem for members of cross products. (Contributed by NM, 20-Jun-2007.)
Assertion
Ref Expression
xpopth  |-  ( ( A  e.  ( C  X.  D )  /\  B  e.  ( R  X.  S ) )  -> 
( ( ( 1st `  A )  =  ( 1st `  B )  /\  ( 2nd `  A
)  =  ( 2nd `  B ) )  <->  A  =  B ) )

Proof of Theorem xpopth
StepHypRef Expression
1 1st2nd2 6189 . . 3  |-  ( A  e.  ( C  X.  D )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
2 1st2nd2 6189 . . 3  |-  ( B  e.  ( R  X.  S )  ->  B  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
31, 2eqeqan12d 2203 . 2  |-  ( ( A  e.  ( C  X.  D )  /\  B  e.  ( R  X.  S ) )  -> 
( A  =  B  <->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. ) )
4 1stexg 6181 . . . 4  |-  ( A  e.  ( C  X.  D )  ->  ( 1st `  A )  e. 
_V )
5 2ndexg 6182 . . . 4  |-  ( A  e.  ( C  X.  D )  ->  ( 2nd `  A )  e. 
_V )
6 opthg 4250 . . . 4  |-  ( ( ( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V )  -> 
( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
74, 5, 6syl2anc 411 . . 3  |-  ( A  e.  ( C  X.  D )  ->  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
87adantr 276 . 2  |-  ( ( A  e.  ( C  X.  D )  /\  B  e.  ( R  X.  S ) )  -> 
( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B
) ) ) )
93, 8bitr2d 189 1  |-  ( ( A  e.  ( C  X.  D )  /\  B  e.  ( R  X.  S ) )  -> 
( ( ( 1st `  A )  =  ( 1st `  B )  /\  ( 2nd `  A
)  =  ( 2nd `  B ) )  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158   _Vcvv 2749   <.cop 3607    X. cxp 4636   ` cfv 5228   1stc1st 6152   2ndc2nd 6153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fo 5234  df-fv 5236  df-1st 6154  df-2nd 6155
This theorem is referenced by:  xmetxp  14278
  Copyright terms: Public domain W3C validator