Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inl11 | Unicode version |
Description: Left injection is one-to-one. (Contributed by Jim Kingdon, 12-Jul-2023.) |
Ref | Expression |
---|---|
inl11 | inl inl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inl 7024 | . . . 4 inl | |
2 | opeq2 3766 | . . . 4 | |
3 | elex 2741 | . . . . 5 | |
4 | 3 | adantr 274 | . . . 4 |
5 | 0ex 4116 | . . . . 5 | |
6 | simpl 108 | . . . . 5 | |
7 | opexg 4213 | . . . . 5 | |
8 | 5, 6, 7 | sylancr 412 | . . . 4 |
9 | 1, 2, 4, 8 | fvmptd3 5589 | . . 3 inl |
10 | opeq2 3766 | . . . 4 | |
11 | elex 2741 | . . . . 5 | |
12 | 11 | adantl 275 | . . . 4 |
13 | 5 | a1i 9 | . . . . 5 |
14 | opexg 4213 | . . . . 5 | |
15 | 13, 14 | sylancom 418 | . . . 4 |
16 | 1, 10, 12, 15 | fvmptd3 5589 | . . 3 inl |
17 | 9, 16 | eqeq12d 2185 | . 2 inl inl |
18 | opthg 4223 | . . . . 5 | |
19 | 5, 18 | mpan 422 | . . . 4 |
20 | eqid 2170 | . . . . 5 | |
21 | 20 | biantrur 301 | . . . 4 |
22 | 19, 21 | bitr4di 197 | . . 3 |
23 | 22 | adantr 274 | . 2 |
24 | 17, 23 | bitrd 187 | 1 inl inl |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cvv 2730 c0 3414 cop 3586 cfv 5198 inlcinl 7022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-inl 7024 |
This theorem is referenced by: omp1eomlem 7071 difinfsnlem 7076 |
Copyright terms: Public domain | W3C validator |