ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inl11 Unicode version

Theorem inl11 7124
Description: Left injection is one-to-one. (Contributed by Jim Kingdon, 12-Jul-2023.)
Assertion
Ref Expression
inl11  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl `  A
)  =  (inl `  B )  <->  A  =  B ) )

Proof of Theorem inl11
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-inl 7106 . . . 4  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
2 opeq2 3805 . . . 4  |-  ( x  =  A  ->  <. (/) ,  x >.  =  <. (/) ,  A >. )
3 elex 2771 . . . . 5  |-  ( A  e.  V  ->  A  e.  _V )
43adantr 276 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  e.  _V )
5 0ex 4156 . . . . 5  |-  (/)  e.  _V
6 simpl 109 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  e.  V )
7 opexg 4257 . . . . 5  |-  ( (
(/)  e.  _V  /\  A  e.  V )  ->  <. (/) ,  A >.  e.  _V )
85, 6, 7sylancr 414 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. (/) ,  A >.  e. 
_V )
91, 2, 4, 8fvmptd3 5651 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl `  A )  =  <. (/) ,  A >. )
10 opeq2 3805 . . . 4  |-  ( x  =  B  ->  <. (/) ,  x >.  =  <. (/) ,  B >. )
11 elex 2771 . . . . 5  |-  ( B  e.  W  ->  B  e.  _V )
1211adantl 277 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  e.  _V )
135a1i 9 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
(/)  e.  _V )
14 opexg 4257 . . . . 5  |-  ( (
(/)  e.  _V  /\  B  e.  W )  ->  <. (/) ,  B >.  e.  _V )
1513, 14sylancom 420 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. (/) ,  B >.  e. 
_V )
161, 10, 12, 15fvmptd3 5651 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl `  B )  =  <. (/) ,  B >. )
179, 16eqeq12d 2208 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl `  A
)  =  (inl `  B )  <->  <. (/) ,  A >.  =  <. (/) ,  B >. ) )
18 opthg 4267 . . . . 5  |-  ( (
(/)  e.  _V  /\  A  e.  V )  ->  ( <.
(/) ,  A >.  = 
<. (/) ,  B >.  <->  ( (/)  =  (/)  /\  A  =  B ) ) )
195, 18mpan 424 . . . 4  |-  ( A  e.  V  ->  ( <.
(/) ,  A >.  = 
<. (/) ,  B >.  <->  ( (/)  =  (/)  /\  A  =  B ) ) )
20 eqid 2193 . . . . 5  |-  (/)  =  (/)
2120biantrur 303 . . . 4  |-  ( A  =  B  <->  ( (/)  =  (/)  /\  A  =  B ) )
2219, 21bitr4di 198 . . 3  |-  ( A  e.  V  ->  ( <.
(/) ,  A >.  = 
<. (/) ,  B >.  <->  A  =  B ) )
2322adantr 276 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. (/) ,  A >.  = 
<. (/) ,  B >.  <->  A  =  B ) )
2417, 23bitrd 188 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl `  A
)  =  (inl `  B )  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760   (/)c0 3446   <.cop 3621   ` cfv 5254  inlcinl 7104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-inl 7106
This theorem is referenced by:  omp1eomlem  7153  difinfsnlem  7158
  Copyright terms: Public domain W3C validator