ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inl11 Unicode version

Theorem inl11 7232
Description: Left injection is one-to-one. (Contributed by Jim Kingdon, 12-Jul-2023.)
Assertion
Ref Expression
inl11  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl `  A
)  =  (inl `  B )  <->  A  =  B ) )

Proof of Theorem inl11
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-inl 7214 . . . 4  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
2 opeq2 3858 . . . 4  |-  ( x  =  A  ->  <. (/) ,  x >.  =  <. (/) ,  A >. )
3 elex 2811 . . . . 5  |-  ( A  e.  V  ->  A  e.  _V )
43adantr 276 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  e.  _V )
5 0ex 4211 . . . . 5  |-  (/)  e.  _V
6 simpl 109 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  e.  V )
7 opexg 4314 . . . . 5  |-  ( (
(/)  e.  _V  /\  A  e.  V )  ->  <. (/) ,  A >.  e.  _V )
85, 6, 7sylancr 414 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. (/) ,  A >.  e. 
_V )
91, 2, 4, 8fvmptd3 5728 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl `  A )  =  <. (/) ,  A >. )
10 opeq2 3858 . . . 4  |-  ( x  =  B  ->  <. (/) ,  x >.  =  <. (/) ,  B >. )
11 elex 2811 . . . . 5  |-  ( B  e.  W  ->  B  e.  _V )
1211adantl 277 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  e.  _V )
135a1i 9 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
(/)  e.  _V )
14 opexg 4314 . . . . 5  |-  ( (
(/)  e.  _V  /\  B  e.  W )  ->  <. (/) ,  B >.  e.  _V )
1513, 14sylancom 420 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. (/) ,  B >.  e. 
_V )
161, 10, 12, 15fvmptd3 5728 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl `  B )  =  <. (/) ,  B >. )
179, 16eqeq12d 2244 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl `  A
)  =  (inl `  B )  <->  <. (/) ,  A >.  =  <. (/) ,  B >. ) )
18 opthg 4324 . . . . 5  |-  ( (
(/)  e.  _V  /\  A  e.  V )  ->  ( <.
(/) ,  A >.  = 
<. (/) ,  B >.  <->  ( (/)  =  (/)  /\  A  =  B ) ) )
195, 18mpan 424 . . . 4  |-  ( A  e.  V  ->  ( <.
(/) ,  A >.  = 
<. (/) ,  B >.  <->  ( (/)  =  (/)  /\  A  =  B ) ) )
20 eqid 2229 . . . . 5  |-  (/)  =  (/)
2120biantrur 303 . . . 4  |-  ( A  =  B  <->  ( (/)  =  (/)  /\  A  =  B ) )
2219, 21bitr4di 198 . . 3  |-  ( A  e.  V  ->  ( <.
(/) ,  A >.  = 
<. (/) ,  B >.  <->  A  =  B ) )
2322adantr 276 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. (/) ,  A >.  = 
<. (/) ,  B >.  <->  A  =  B ) )
2417, 23bitrd 188 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl `  A
)  =  (inl `  B )  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799   (/)c0 3491   <.cop 3669   ` cfv 5318  inlcinl 7212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-inl 7214
This theorem is referenced by:  omp1eomlem  7261  difinfsnlem  7266
  Copyright terms: Public domain W3C validator