ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inl11 Unicode version

Theorem inl11 7042
Description: Left injection is one-to-one. (Contributed by Jim Kingdon, 12-Jul-2023.)
Assertion
Ref Expression
inl11  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl `  A
)  =  (inl `  B )  <->  A  =  B ) )

Proof of Theorem inl11
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-inl 7024 . . . 4  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
2 opeq2 3766 . . . 4  |-  ( x  =  A  ->  <. (/) ,  x >.  =  <. (/) ,  A >. )
3 elex 2741 . . . . 5  |-  ( A  e.  V  ->  A  e.  _V )
43adantr 274 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  e.  _V )
5 0ex 4116 . . . . 5  |-  (/)  e.  _V
6 simpl 108 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  e.  V )
7 opexg 4213 . . . . 5  |-  ( (
(/)  e.  _V  /\  A  e.  V )  ->  <. (/) ,  A >.  e.  _V )
85, 6, 7sylancr 412 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. (/) ,  A >.  e. 
_V )
91, 2, 4, 8fvmptd3 5589 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl `  A )  =  <. (/) ,  A >. )
10 opeq2 3766 . . . 4  |-  ( x  =  B  ->  <. (/) ,  x >.  =  <. (/) ,  B >. )
11 elex 2741 . . . . 5  |-  ( B  e.  W  ->  B  e.  _V )
1211adantl 275 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  e.  _V )
135a1i 9 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
(/)  e.  _V )
14 opexg 4213 . . . . 5  |-  ( (
(/)  e.  _V  /\  B  e.  W )  ->  <. (/) ,  B >.  e.  _V )
1513, 14sylancom 418 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. (/) ,  B >.  e. 
_V )
161, 10, 12, 15fvmptd3 5589 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl `  B )  =  <. (/) ,  B >. )
179, 16eqeq12d 2185 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl `  A
)  =  (inl `  B )  <->  <. (/) ,  A >.  =  <. (/) ,  B >. ) )
18 opthg 4223 . . . . 5  |-  ( (
(/)  e.  _V  /\  A  e.  V )  ->  ( <.
(/) ,  A >.  = 
<. (/) ,  B >.  <->  ( (/)  =  (/)  /\  A  =  B ) ) )
195, 18mpan 422 . . . 4  |-  ( A  e.  V  ->  ( <.
(/) ,  A >.  = 
<. (/) ,  B >.  <->  ( (/)  =  (/)  /\  A  =  B ) ) )
20 eqid 2170 . . . . 5  |-  (/)  =  (/)
2120biantrur 301 . . . 4  |-  ( A  =  B  <->  ( (/)  =  (/)  /\  A  =  B ) )
2219, 21bitr4di 197 . . 3  |-  ( A  e.  V  ->  ( <.
(/) ,  A >.  = 
<. (/) ,  B >.  <->  A  =  B ) )
2322adantr 274 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. (/) ,  A >.  = 
<. (/) ,  B >.  <->  A  =  B ) )
2417, 23bitrd 187 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl `  A
)  =  (inl `  B )  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   _Vcvv 2730   (/)c0 3414   <.cop 3586   ` cfv 5198  inlcinl 7022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-inl 7024
This theorem is referenced by:  omp1eomlem  7071  difinfsnlem  7076
  Copyright terms: Public domain W3C validator