ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inl11 Unicode version

Theorem inl11 7030
Description: Left injection is one-to-one. (Contributed by Jim Kingdon, 12-Jul-2023.)
Assertion
Ref Expression
inl11  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl `  A
)  =  (inl `  B )  <->  A  =  B ) )

Proof of Theorem inl11
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-inl 7012 . . . 4  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
2 opeq2 3759 . . . 4  |-  ( x  =  A  ->  <. (/) ,  x >.  =  <. (/) ,  A >. )
3 elex 2737 . . . . 5  |-  ( A  e.  V  ->  A  e.  _V )
43adantr 274 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  e.  _V )
5 0ex 4109 . . . . 5  |-  (/)  e.  _V
6 simpl 108 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  e.  V )
7 opexg 4206 . . . . 5  |-  ( (
(/)  e.  _V  /\  A  e.  V )  ->  <. (/) ,  A >.  e.  _V )
85, 6, 7sylancr 411 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. (/) ,  A >.  e. 
_V )
91, 2, 4, 8fvmptd3 5579 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl `  A )  =  <. (/) ,  A >. )
10 opeq2 3759 . . . 4  |-  ( x  =  B  ->  <. (/) ,  x >.  =  <. (/) ,  B >. )
11 elex 2737 . . . . 5  |-  ( B  e.  W  ->  B  e.  _V )
1211adantl 275 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  e.  _V )
135a1i 9 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
(/)  e.  _V )
14 opexg 4206 . . . . 5  |-  ( (
(/)  e.  _V  /\  B  e.  W )  ->  <. (/) ,  B >.  e.  _V )
1513, 14sylancom 417 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. (/) ,  B >.  e. 
_V )
161, 10, 12, 15fvmptd3 5579 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl `  B )  =  <. (/) ,  B >. )
179, 16eqeq12d 2180 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl `  A
)  =  (inl `  B )  <->  <. (/) ,  A >.  =  <. (/) ,  B >. ) )
18 opthg 4216 . . . . 5  |-  ( (
(/)  e.  _V  /\  A  e.  V )  ->  ( <.
(/) ,  A >.  = 
<. (/) ,  B >.  <->  ( (/)  =  (/)  /\  A  =  B ) ) )
195, 18mpan 421 . . . 4  |-  ( A  e.  V  ->  ( <.
(/) ,  A >.  = 
<. (/) ,  B >.  <->  ( (/)  =  (/)  /\  A  =  B ) ) )
20 eqid 2165 . . . . 5  |-  (/)  =  (/)
2120biantrur 301 . . . 4  |-  ( A  =  B  <->  ( (/)  =  (/)  /\  A  =  B ) )
2219, 21bitr4di 197 . . 3  |-  ( A  e.  V  ->  ( <.
(/) ,  A >.  = 
<. (/) ,  B >.  <->  A  =  B ) )
2322adantr 274 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. (/) ,  A >.  = 
<. (/) ,  B >.  <->  A  =  B ) )
2417, 23bitrd 187 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl `  A
)  =  (inl `  B )  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726   (/)c0 3409   <.cop 3579   ` cfv 5188  inlcinl 7010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-inl 7012
This theorem is referenced by:  omp1eomlem  7059  difinfsnlem  7064
  Copyright terms: Public domain W3C validator