ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qnumdenbi Unicode version

Theorem qnumdenbi 11859
Description: Two numbers are the canonical representation of a rational iff they are coprime and have the right quotient. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
qnumdenbi  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( B  gcd  C )  =  1  /\  A  =  ( B  /  C ) )  <-> 
( (numer `  A
)  =  B  /\  (denom `  A )  =  C ) ) )

Proof of Theorem qnumdenbi
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 opelxpi 4566 . . . 4  |-  ( ( B  e.  ZZ  /\  C  e.  NN )  -> 
<. B ,  C >.  e.  ( ZZ  X.  NN ) )
213adant1 999 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  <. B ,  C >.  e.  ( ZZ 
X.  NN ) )
3 qredeu 11767 . . . 4  |-  ( A  e.  QQ  ->  E! a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )
433ad2ant1 1002 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  E! a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )
5 fveq2 5414 . . . . . . 7  |-  ( a  =  <. B ,  C >.  ->  ( 1st `  a
)  =  ( 1st `  <. B ,  C >. ) )
6 fveq2 5414 . . . . . . 7  |-  ( a  =  <. B ,  C >.  ->  ( 2nd `  a
)  =  ( 2nd `  <. B ,  C >. ) )
75, 6oveq12d 5785 . . . . . 6  |-  ( a  =  <. B ,  C >.  ->  ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. ) ) )
87eqeq1d 2146 . . . . 5  |-  ( a  =  <. B ,  C >.  ->  ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  <-> 
( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  1 ) )
95, 6oveq12d 5785 . . . . . 6  |-  ( a  =  <. B ,  C >.  ->  ( ( 1st `  a )  /  ( 2nd `  a ) )  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. ) ) )
109eqeq2d 2149 . . . . 5  |-  ( a  =  <. B ,  C >.  ->  ( A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) )  <->  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
) ) )
118, 10anbi12d 464 . . . 4  |-  ( a  =  <. B ,  C >.  ->  ( ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) )  <-> 
( ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. ) )  =  1  /\  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
) ) ) )
1211riota2 5745 . . 3  |-  ( (
<. B ,  C >.  e.  ( ZZ  X.  NN )  /\  E! a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  ->  ( (
( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  1  /\  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. ) ) )  <->  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >. ) )
132, 4, 12syl2anc 408 . 2  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. ) )  =  1  /\  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
) )  <->  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >. ) )
14 op1stg 6041 . . . . . 6  |-  ( ( B  e.  ZZ  /\  C  e.  NN )  ->  ( 1st `  <. B ,  C >. )  =  B )
15 op2ndg 6042 . . . . . 6  |-  ( ( B  e.  ZZ  /\  C  e.  NN )  ->  ( 2nd `  <. B ,  C >. )  =  C )
1614, 15oveq12d 5785 . . . . 5  |-  ( ( B  e.  ZZ  /\  C  e.  NN )  ->  ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  ( B  gcd  C ) )
17163adant1 999 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  ( B  gcd  C ) )
1817eqeq1d 2146 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  1  <->  ( B  gcd  C )  =  1 ) )
19143adant1 999 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( 1st `  <. B ,  C >. )  =  B )
20153adant1 999 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( 2nd `  <. B ,  C >. )  =  C )
2119, 20oveq12d 5785 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
)  =  ( B  /  C ) )
2221eqeq2d 2149 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. ) )  <->  A  =  ( B  /  C
) ) )
2318, 22anbi12d 464 . 2  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. ) )  =  1  /\  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
) )  <->  ( ( B  gcd  C )  =  1  /\  A  =  ( B  /  C
) ) ) )
24 riotacl 5737 . . . . . . 7  |-  ( E! a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) )  ->  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  e.  ( ZZ 
X.  NN ) )
25 1st2nd2 6066 . . . . . . 7  |-  ( (
iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  e.  ( ZZ 
X.  NN )  -> 
( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a )  /  ( 2nd `  a ) ) ) )  =  <. ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) ,  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) >. )
263, 24, 253syl 17 . . . . . 6  |-  ( A  e.  QQ  ->  ( iota_ a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) ,  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) >. )
27 qnumval 11852 . . . . . . 7  |-  ( A  e.  QQ  ->  (numer `  A )  =  ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) )
28 qdenval 11853 . . . . . . 7  |-  ( A  e.  QQ  ->  (denom `  A )  =  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) )
2927, 28opeq12d 3708 . . . . . 6  |-  ( A  e.  QQ  ->  <. (numer `  A ) ,  (denom `  A ) >.  =  <. ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) ,  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) >. )
3026, 29eqtr4d 2173 . . . . 5  |-  ( A  e.  QQ  ->  ( iota_ a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. (numer `  A ) ,  (denom `  A ) >. )
3130eqeq1d 2146 . . . 4  |-  ( A  e.  QQ  ->  (
( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a )  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >.  <->  <. (numer `  A ) ,  (denom `  A ) >.  =  <. B ,  C >. )
)
32313ad2ant1 1002 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a )  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >.  <->  <. (numer `  A ) ,  (denom `  A ) >.  =  <. B ,  C >. )
)
33 qnumcl 11855 . . . . 5  |-  ( A  e.  QQ  ->  (numer `  A )  e.  ZZ )
34 qdencl 11856 . . . . 5  |-  ( A  e.  QQ  ->  (denom `  A )  e.  NN )
35 opthg 4155 . . . . 5  |-  ( ( (numer `  A )  e.  ZZ  /\  (denom `  A )  e.  NN )  ->  ( <. (numer `  A ) ,  (denom `  A ) >.  =  <. B ,  C >.  <->  ( (numer `  A )  =  B  /\  (denom `  A
)  =  C ) ) )
3633, 34, 35syl2anc 408 . . . 4  |-  ( A  e.  QQ  ->  ( <. (numer `  A ) ,  (denom `  A ) >.  =  <. B ,  C >.  <-> 
( (numer `  A
)  =  B  /\  (denom `  A )  =  C ) ) )
37363ad2ant1 1002 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( <. (numer `  A ) ,  (denom `  A ) >.  =  <. B ,  C >.  <-> 
( (numer `  A
)  =  B  /\  (denom `  A )  =  C ) ) )
3832, 37bitrd 187 . 2  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a )  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >.  <->  ( (numer `  A )  =  B  /\  (denom `  A
)  =  C ) ) )
3913, 23, 383bitr3d 217 1  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( B  gcd  C )  =  1  /\  A  =  ( B  /  C ) )  <-> 
( (numer `  A
)  =  B  /\  (denom `  A )  =  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   E!wreu 2416   <.cop 3525    X. cxp 4532   ` cfv 5118   iota_crio 5722  (class class class)co 5767   1stc1st 6029   2ndc2nd 6030   1c1 7614    / cdiv 8425   NNcn 8713   ZZcz 9047   QQcq 9404    gcd cgcd 11624  numercnumer 11848  denomcdenom 11849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-sup 6864  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fzo 9913  df-fl 10036  df-mod 10089  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-dvds 11483  df-gcd 11625  df-numer 11850  df-denom 11851
This theorem is referenced by:  qnumdencoprm  11860  qeqnumdivden  11861  divnumden  11863  numdensq  11869
  Copyright terms: Public domain W3C validator