ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qnumdenbi Unicode version

Theorem qnumdenbi 12514
Description: Two numbers are the canonical representation of a rational iff they are coprime and have the right quotient. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
qnumdenbi  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( B  gcd  C )  =  1  /\  A  =  ( B  /  C ) )  <-> 
( (numer `  A
)  =  B  /\  (denom `  A )  =  C ) ) )

Proof of Theorem qnumdenbi
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 opelxpi 4707 . . . 4  |-  ( ( B  e.  ZZ  /\  C  e.  NN )  -> 
<. B ,  C >.  e.  ( ZZ  X.  NN ) )
213adant1 1018 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  <. B ,  C >.  e.  ( ZZ 
X.  NN ) )
3 qredeu 12419 . . . 4  |-  ( A  e.  QQ  ->  E! a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )
433ad2ant1 1021 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  E! a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )
5 fveq2 5576 . . . . . . 7  |-  ( a  =  <. B ,  C >.  ->  ( 1st `  a
)  =  ( 1st `  <. B ,  C >. ) )
6 fveq2 5576 . . . . . . 7  |-  ( a  =  <. B ,  C >.  ->  ( 2nd `  a
)  =  ( 2nd `  <. B ,  C >. ) )
75, 6oveq12d 5962 . . . . . 6  |-  ( a  =  <. B ,  C >.  ->  ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. ) ) )
87eqeq1d 2214 . . . . 5  |-  ( a  =  <. B ,  C >.  ->  ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  <-> 
( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  1 ) )
95, 6oveq12d 5962 . . . . . 6  |-  ( a  =  <. B ,  C >.  ->  ( ( 1st `  a )  /  ( 2nd `  a ) )  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. ) ) )
109eqeq2d 2217 . . . . 5  |-  ( a  =  <. B ,  C >.  ->  ( A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) )  <->  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
) ) )
118, 10anbi12d 473 . . . 4  |-  ( a  =  <. B ,  C >.  ->  ( ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) )  <-> 
( ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. ) )  =  1  /\  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
) ) ) )
1211riota2 5922 . . 3  |-  ( (
<. B ,  C >.  e.  ( ZZ  X.  NN )  /\  E! a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  ->  ( (
( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  1  /\  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. ) ) )  <->  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >. ) )
132, 4, 12syl2anc 411 . 2  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. ) )  =  1  /\  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
) )  <->  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >. ) )
14 op1stg 6236 . . . . . 6  |-  ( ( B  e.  ZZ  /\  C  e.  NN )  ->  ( 1st `  <. B ,  C >. )  =  B )
15 op2ndg 6237 . . . . . 6  |-  ( ( B  e.  ZZ  /\  C  e.  NN )  ->  ( 2nd `  <. B ,  C >. )  =  C )
1614, 15oveq12d 5962 . . . . 5  |-  ( ( B  e.  ZZ  /\  C  e.  NN )  ->  ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  ( B  gcd  C ) )
17163adant1 1018 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  ( B  gcd  C ) )
1817eqeq1d 2214 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  1  <->  ( B  gcd  C )  =  1 ) )
19143adant1 1018 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( 1st `  <. B ,  C >. )  =  B )
20153adant1 1018 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( 2nd `  <. B ,  C >. )  =  C )
2119, 20oveq12d 5962 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
)  =  ( B  /  C ) )
2221eqeq2d 2217 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. ) )  <->  A  =  ( B  /  C
) ) )
2318, 22anbi12d 473 . 2  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. ) )  =  1  /\  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
) )  <->  ( ( B  gcd  C )  =  1  /\  A  =  ( B  /  C
) ) ) )
24 riotacl 5914 . . . . . . 7  |-  ( E! a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) )  ->  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  e.  ( ZZ 
X.  NN ) )
25 1st2nd2 6261 . . . . . . 7  |-  ( (
iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  e.  ( ZZ 
X.  NN )  -> 
( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a )  /  ( 2nd `  a ) ) ) )  =  <. ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) ,  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) >. )
263, 24, 253syl 17 . . . . . 6  |-  ( A  e.  QQ  ->  ( iota_ a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) ,  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) >. )
27 qnumval 12507 . . . . . . 7  |-  ( A  e.  QQ  ->  (numer `  A )  =  ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) )
28 qdenval 12508 . . . . . . 7  |-  ( A  e.  QQ  ->  (denom `  A )  =  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) )
2927, 28opeq12d 3827 . . . . . 6  |-  ( A  e.  QQ  ->  <. (numer `  A ) ,  (denom `  A ) >.  =  <. ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) ,  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) >. )
3026, 29eqtr4d 2241 . . . . 5  |-  ( A  e.  QQ  ->  ( iota_ a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. (numer `  A ) ,  (denom `  A ) >. )
3130eqeq1d 2214 . . . 4  |-  ( A  e.  QQ  ->  (
( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a )  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >.  <->  <. (numer `  A ) ,  (denom `  A ) >.  =  <. B ,  C >. )
)
32313ad2ant1 1021 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a )  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >.  <->  <. (numer `  A ) ,  (denom `  A ) >.  =  <. B ,  C >. )
)
33 qnumcl 12510 . . . . 5  |-  ( A  e.  QQ  ->  (numer `  A )  e.  ZZ )
34 qdencl 12511 . . . . 5  |-  ( A  e.  QQ  ->  (denom `  A )  e.  NN )
35 opthg 4282 . . . . 5  |-  ( ( (numer `  A )  e.  ZZ  /\  (denom `  A )  e.  NN )  ->  ( <. (numer `  A ) ,  (denom `  A ) >.  =  <. B ,  C >.  <->  ( (numer `  A )  =  B  /\  (denom `  A
)  =  C ) ) )
3633, 34, 35syl2anc 411 . . . 4  |-  ( A  e.  QQ  ->  ( <. (numer `  A ) ,  (denom `  A ) >.  =  <. B ,  C >.  <-> 
( (numer `  A
)  =  B  /\  (denom `  A )  =  C ) ) )
37363ad2ant1 1021 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( <. (numer `  A ) ,  (denom `  A ) >.  =  <. B ,  C >.  <-> 
( (numer `  A
)  =  B  /\  (denom `  A )  =  C ) ) )
3832, 37bitrd 188 . 2  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a )  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >.  <->  ( (numer `  A )  =  B  /\  (denom `  A
)  =  C ) ) )
3913, 23, 383bitr3d 218 1  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( B  gcd  C )  =  1  /\  A  =  ( B  /  C ) )  <-> 
( (numer `  A
)  =  B  /\  (denom `  A )  =  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   E!wreu 2486   <.cop 3636    X. cxp 4673   ` cfv 5271   iota_crio 5898  (class class class)co 5944   1stc1st 6224   2ndc2nd 6225   1c1 7926    / cdiv 8745   NNcn 9036   ZZcz 9372   QQcq 9740    gcd cgcd 12274  numercnumer 12503  denomcdenom 12504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-sup 7086  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099  df-gcd 12275  df-numer 12505  df-denom 12506
This theorem is referenced by:  qnumdencoprm  12515  qeqnumdivden  12516  divnumden  12518  numdensq  12524
  Copyright terms: Public domain W3C validator