ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qnumdenbi Unicode version

Theorem qnumdenbi 12146
Description: Two numbers are the canonical representation of a rational iff they are coprime and have the right quotient. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
qnumdenbi  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( B  gcd  C )  =  1  /\  A  =  ( B  /  C ) )  <-> 
( (numer `  A
)  =  B  /\  (denom `  A )  =  C ) ) )

Proof of Theorem qnumdenbi
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 opelxpi 4643 . . . 4  |-  ( ( B  e.  ZZ  /\  C  e.  NN )  -> 
<. B ,  C >.  e.  ( ZZ  X.  NN ) )
213adant1 1010 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  <. B ,  C >.  e.  ( ZZ 
X.  NN ) )
3 qredeu 12051 . . . 4  |-  ( A  e.  QQ  ->  E! a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )
433ad2ant1 1013 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  E! a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )
5 fveq2 5496 . . . . . . 7  |-  ( a  =  <. B ,  C >.  ->  ( 1st `  a
)  =  ( 1st `  <. B ,  C >. ) )
6 fveq2 5496 . . . . . . 7  |-  ( a  =  <. B ,  C >.  ->  ( 2nd `  a
)  =  ( 2nd `  <. B ,  C >. ) )
75, 6oveq12d 5871 . . . . . 6  |-  ( a  =  <. B ,  C >.  ->  ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. ) ) )
87eqeq1d 2179 . . . . 5  |-  ( a  =  <. B ,  C >.  ->  ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  <-> 
( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  1 ) )
95, 6oveq12d 5871 . . . . . 6  |-  ( a  =  <. B ,  C >.  ->  ( ( 1st `  a )  /  ( 2nd `  a ) )  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. ) ) )
109eqeq2d 2182 . . . . 5  |-  ( a  =  <. B ,  C >.  ->  ( A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) )  <->  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
) ) )
118, 10anbi12d 470 . . . 4  |-  ( a  =  <. B ,  C >.  ->  ( ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) )  <-> 
( ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. ) )  =  1  /\  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
) ) ) )
1211riota2 5831 . . 3  |-  ( (
<. B ,  C >.  e.  ( ZZ  X.  NN )  /\  E! a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  ->  ( (
( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  1  /\  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. ) ) )  <->  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >. ) )
132, 4, 12syl2anc 409 . 2  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. ) )  =  1  /\  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
) )  <->  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >. ) )
14 op1stg 6129 . . . . . 6  |-  ( ( B  e.  ZZ  /\  C  e.  NN )  ->  ( 1st `  <. B ,  C >. )  =  B )
15 op2ndg 6130 . . . . . 6  |-  ( ( B  e.  ZZ  /\  C  e.  NN )  ->  ( 2nd `  <. B ,  C >. )  =  C )
1614, 15oveq12d 5871 . . . . 5  |-  ( ( B  e.  ZZ  /\  C  e.  NN )  ->  ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  ( B  gcd  C ) )
17163adant1 1010 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  ( B  gcd  C ) )
1817eqeq1d 2179 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  1  <->  ( B  gcd  C )  =  1 ) )
19143adant1 1010 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( 1st `  <. B ,  C >. )  =  B )
20153adant1 1010 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( 2nd `  <. B ,  C >. )  =  C )
2119, 20oveq12d 5871 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
)  =  ( B  /  C ) )
2221eqeq2d 2182 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. ) )  <->  A  =  ( B  /  C
) ) )
2318, 22anbi12d 470 . 2  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. ) )  =  1  /\  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
) )  <->  ( ( B  gcd  C )  =  1  /\  A  =  ( B  /  C
) ) ) )
24 riotacl 5823 . . . . . . 7  |-  ( E! a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) )  ->  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  e.  ( ZZ 
X.  NN ) )
25 1st2nd2 6154 . . . . . . 7  |-  ( (
iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  e.  ( ZZ 
X.  NN )  -> 
( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a )  /  ( 2nd `  a ) ) ) )  =  <. ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) ,  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) >. )
263, 24, 253syl 17 . . . . . 6  |-  ( A  e.  QQ  ->  ( iota_ a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) ,  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) >. )
27 qnumval 12139 . . . . . . 7  |-  ( A  e.  QQ  ->  (numer `  A )  =  ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) )
28 qdenval 12140 . . . . . . 7  |-  ( A  e.  QQ  ->  (denom `  A )  =  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) )
2927, 28opeq12d 3773 . . . . . 6  |-  ( A  e.  QQ  ->  <. (numer `  A ) ,  (denom `  A ) >.  =  <. ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) ,  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) >. )
3026, 29eqtr4d 2206 . . . . 5  |-  ( A  e.  QQ  ->  ( iota_ a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. (numer `  A ) ,  (denom `  A ) >. )
3130eqeq1d 2179 . . . 4  |-  ( A  e.  QQ  ->  (
( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a )  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >.  <->  <. (numer `  A ) ,  (denom `  A ) >.  =  <. B ,  C >. )
)
32313ad2ant1 1013 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a )  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >.  <->  <. (numer `  A ) ,  (denom `  A ) >.  =  <. B ,  C >. )
)
33 qnumcl 12142 . . . . 5  |-  ( A  e.  QQ  ->  (numer `  A )  e.  ZZ )
34 qdencl 12143 . . . . 5  |-  ( A  e.  QQ  ->  (denom `  A )  e.  NN )
35 opthg 4223 . . . . 5  |-  ( ( (numer `  A )  e.  ZZ  /\  (denom `  A )  e.  NN )  ->  ( <. (numer `  A ) ,  (denom `  A ) >.  =  <. B ,  C >.  <->  ( (numer `  A )  =  B  /\  (denom `  A
)  =  C ) ) )
3633, 34, 35syl2anc 409 . . . 4  |-  ( A  e.  QQ  ->  ( <. (numer `  A ) ,  (denom `  A ) >.  =  <. B ,  C >.  <-> 
( (numer `  A
)  =  B  /\  (denom `  A )  =  C ) ) )
37363ad2ant1 1013 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( <. (numer `  A ) ,  (denom `  A ) >.  =  <. B ,  C >.  <-> 
( (numer `  A
)  =  B  /\  (denom `  A )  =  C ) ) )
3832, 37bitrd 187 . 2  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a )  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >.  <->  ( (numer `  A )  =  B  /\  (denom `  A
)  =  C ) ) )
3913, 23, 383bitr3d 217 1  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( B  gcd  C )  =  1  /\  A  =  ( B  /  C ) )  <-> 
( (numer `  A
)  =  B  /\  (denom `  A )  =  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   E!wreu 2450   <.cop 3586    X. cxp 4609   ` cfv 5198   iota_crio 5808  (class class class)co 5853   1stc1st 6117   2ndc2nd 6118   1c1 7775    / cdiv 8589   NNcn 8878   ZZcz 9212   QQcq 9578    gcd cgcd 11897  numercnumer 12135  denomcdenom 12136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-numer 12137  df-denom 12138
This theorem is referenced by:  qnumdencoprm  12147  qeqnumdivden  12148  divnumden  12150  numdensq  12156
  Copyright terms: Public domain W3C validator