ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndomo Unicode version

Theorem nndomo 6830
Description: Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
nndomo  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ~<_  B  <->  A  C_  B
) )

Proof of Theorem nndomo
StepHypRef Expression
1 php5dom 6829 . . . . . . . 8  |-  ( B  e.  om  ->  -.  suc  B  ~<_  B )
21ad2antlr 481 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  -.  suc  B  ~<_  B )
3 domtr 6751 . . . . . . . . 9  |-  ( ( suc  B  ~<_  A  /\  A  ~<_  B )  ->  suc  B  ~<_  B )
43expcom 115 . . . . . . . 8  |-  ( A  ~<_  B  ->  ( suc  B  ~<_  A  ->  suc  B  ~<_  B ) )
54adantl 275 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  ( suc  B  ~<_  A  ->  suc  B  ~<_  B ) )
62, 5mtod 653 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  -.  suc  B  ~<_  A )
7 ssdomg 6744 . . . . . . 7  |-  ( A  e.  om  ->  ( suc  B  C_  A  ->  suc 
B  ~<_  A ) )
87ad2antrr 480 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  ( suc  B  C_  A  ->  suc  B  ~<_  A ) )
96, 8mtod 653 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  -.  suc  B  C_  A )
10 nnord 4589 . . . . . . 7  |-  ( A  e.  om  ->  Ord  A )
11 ordsucss 4481 . . . . . . 7  |-  ( Ord 
A  ->  ( B  e.  A  ->  suc  B  C_  A ) )
1210, 11syl 14 . . . . . 6  |-  ( A  e.  om  ->  ( B  e.  A  ->  suc 
B  C_  A )
)
1312ad2antrr 480 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  ( B  e.  A  ->  suc  B  C_  A
) )
149, 13mtod 653 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  -.  B  e.  A
)
15 nntri1 6464 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
1615adantr 274 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
1714, 16mpbird 166 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  A  C_  B )
1817ex 114 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ~<_  B  ->  A  C_  B ) )
19 ssdomg 6744 . . 3  |-  ( B  e.  om  ->  ( A  C_  B  ->  A  ~<_  B ) )
2019adantl 275 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  ->  A  ~<_  B ) )
2118, 20impbid 128 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ~<_  B  <->  A  C_  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136    C_ wss 3116   class class class wbr 3982   Ord word 4340   suc csuc 4343   omcom 4567    ~<_ cdom 6705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-er 6501  df-en 6707  df-dom 6708
This theorem is referenced by:  fisbth  6849  fientri3  6880  hashennnuni  10692  fihashdom  10716  pwf1oexmid  13879
  Copyright terms: Public domain W3C validator