ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndomo Unicode version

Theorem nndomo 6986
Description: Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
nndomo  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ~<_  B  <->  A  C_  B
) )

Proof of Theorem nndomo
StepHypRef Expression
1 php5dom 6985 . . . . . . . 8  |-  ( B  e.  om  ->  -.  suc  B  ~<_  B )
21ad2antlr 489 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  -.  suc  B  ~<_  B )
3 domtr 6900 . . . . . . . . 9  |-  ( ( suc  B  ~<_  A  /\  A  ~<_  B )  ->  suc  B  ~<_  B )
43expcom 116 . . . . . . . 8  |-  ( A  ~<_  B  ->  ( suc  B  ~<_  A  ->  suc  B  ~<_  B ) )
54adantl 277 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  ( suc  B  ~<_  A  ->  suc  B  ~<_  B ) )
62, 5mtod 665 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  -.  suc  B  ~<_  A )
7 ssdomg 6893 . . . . . . 7  |-  ( A  e.  om  ->  ( suc  B  C_  A  ->  suc 
B  ~<_  A ) )
87ad2antrr 488 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  ( suc  B  C_  A  ->  suc  B  ~<_  A ) )
96, 8mtod 665 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  -.  suc  B  C_  A )
10 nnord 4678 . . . . . . 7  |-  ( A  e.  om  ->  Ord  A )
11 ordsucss 4570 . . . . . . 7  |-  ( Ord 
A  ->  ( B  e.  A  ->  suc  B  C_  A ) )
1210, 11syl 14 . . . . . 6  |-  ( A  e.  om  ->  ( B  e.  A  ->  suc 
B  C_  A )
)
1312ad2antrr 488 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  ( B  e.  A  ->  suc  B  C_  A
) )
149, 13mtod 665 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  -.  B  e.  A
)
15 nntri1 6605 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
1615adantr 276 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
1714, 16mpbird 167 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  A  C_  B )
1817ex 115 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ~<_  B  ->  A  C_  B ) )
19 ssdomg 6893 . . 3  |-  ( B  e.  om  ->  ( A  C_  B  ->  A  ~<_  B ) )
2019adantl 277 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  ->  A  ~<_  B ) )
2118, 20impbid 129 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ~<_  B  <->  A  C_  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2178    C_ wss 3174   class class class wbr 4059   Ord word 4427   suc csuc 4430   omcom 4656    ~<_ cdom 6849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-er 6643  df-en 6851  df-dom 6852
This theorem is referenced by:  1ndom2  6987  fisbth  7006  fientri3  7038  hashennnuni  10961  fihashdom  10985  pwf1oexmid  16138
  Copyright terms: Public domain W3C validator