ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndomo Unicode version

Theorem nndomo 6866
Description: Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
nndomo  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ~<_  B  <->  A  C_  B
) )

Proof of Theorem nndomo
StepHypRef Expression
1 php5dom 6865 . . . . . . . 8  |-  ( B  e.  om  ->  -.  suc  B  ~<_  B )
21ad2antlr 489 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  -.  suc  B  ~<_  B )
3 domtr 6787 . . . . . . . . 9  |-  ( ( suc  B  ~<_  A  /\  A  ~<_  B )  ->  suc  B  ~<_  B )
43expcom 116 . . . . . . . 8  |-  ( A  ~<_  B  ->  ( suc  B  ~<_  A  ->  suc  B  ~<_  B ) )
54adantl 277 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  ( suc  B  ~<_  A  ->  suc  B  ~<_  B ) )
62, 5mtod 663 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  -.  suc  B  ~<_  A )
7 ssdomg 6780 . . . . . . 7  |-  ( A  e.  om  ->  ( suc  B  C_  A  ->  suc 
B  ~<_  A ) )
87ad2antrr 488 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  ( suc  B  C_  A  ->  suc  B  ~<_  A ) )
96, 8mtod 663 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  -.  suc  B  C_  A )
10 nnord 4613 . . . . . . 7  |-  ( A  e.  om  ->  Ord  A )
11 ordsucss 4505 . . . . . . 7  |-  ( Ord 
A  ->  ( B  e.  A  ->  suc  B  C_  A ) )
1210, 11syl 14 . . . . . 6  |-  ( A  e.  om  ->  ( B  e.  A  ->  suc 
B  C_  A )
)
1312ad2antrr 488 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  ( B  e.  A  ->  suc  B  C_  A
) )
149, 13mtod 663 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  -.  B  e.  A
)
15 nntri1 6499 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
1615adantr 276 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
1714, 16mpbird 167 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  ~<_  B )  ->  A  C_  B )
1817ex 115 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ~<_  B  ->  A  C_  B ) )
19 ssdomg 6780 . . 3  |-  ( B  e.  om  ->  ( A  C_  B  ->  A  ~<_  B ) )
2019adantl 277 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  ->  A  ~<_  B ) )
2118, 20impbid 129 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ~<_  B  <->  A  C_  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148    C_ wss 3131   class class class wbr 4005   Ord word 4364   suc csuc 4367   omcom 4591    ~<_ cdom 6741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-er 6537  df-en 6743  df-dom 6744
This theorem is referenced by:  fisbth  6885  fientri3  6916  hashennnuni  10761  fihashdom  10785  pwf1oexmid  14834
  Copyright terms: Public domain W3C validator