![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ovanraleqv | GIF version |
Description: Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.) |
Ref | Expression |
---|---|
ovanraleqv.1 | โข (๐ต = ๐ โ (๐ โ ๐)) |
Ref | Expression |
---|---|
ovanraleqv | โข (๐ต = ๐ โ (โ๐ฅ โ ๐ (๐ โง (๐ด ยท ๐ต) = ๐ถ) โ โ๐ฅ โ ๐ (๐ โง (๐ด ยท ๐) = ๐ถ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovanraleqv.1 | . . 3 โข (๐ต = ๐ โ (๐ โ ๐)) | |
2 | oveq2 5885 | . . . 4 โข (๐ต = ๐ โ (๐ด ยท ๐ต) = (๐ด ยท ๐)) | |
3 | 2 | eqeq1d 2186 | . . 3 โข (๐ต = ๐ โ ((๐ด ยท ๐ต) = ๐ถ โ (๐ด ยท ๐) = ๐ถ)) |
4 | 1, 3 | anbi12d 473 | . 2 โข (๐ต = ๐ โ ((๐ โง (๐ด ยท ๐ต) = ๐ถ) โ (๐ โง (๐ด ยท ๐) = ๐ถ))) |
5 | 4 | ralbidv 2477 | 1 โข (๐ต = ๐ โ (โ๐ฅ โ ๐ (๐ โง (๐ด ยท ๐ต) = ๐ถ) โ โ๐ฅ โ ๐ (๐ โง (๐ด ยท ๐) = ๐ถ))) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง wa 104 โ wb 105 = wceq 1353 โwral 2455 (class class class)co 5877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-iota 5180 df-fv 5226 df-ov 5880 |
This theorem is referenced by: mgmidmo 12796 ismgmid 12801 ismgmid2 12804 mgmidsssn0 12808 sgrpidmndm 12826 ismndd 12843 mnd1 12852 mhmmnd 12985 |
Copyright terms: Public domain | W3C validator |