ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovanraleqv GIF version

Theorem ovanraleqv 5901
Description: Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
Hypothesis
Ref Expression
ovanraleqv.1 (๐ต = ๐‘‹ โ†’ (๐œ‘ โ†” ๐œ“))
Assertion
Ref Expression
ovanraleqv (๐ต = ๐‘‹ โ†’ (โˆ€๐‘ฅ โˆˆ ๐‘‰ (๐œ‘ โˆง (๐ด ยท ๐ต) = ๐ถ) โ†” โˆ€๐‘ฅ โˆˆ ๐‘‰ (๐œ“ โˆง (๐ด ยท ๐‘‹) = ๐ถ)))
Distinct variable groups:   ๐‘ฅ,๐ต   ๐‘ฅ,๐‘‹
Allowed substitution hints:   ๐œ‘(๐‘ฅ)   ๐œ“(๐‘ฅ)   ๐ด(๐‘ฅ)   ๐ถ(๐‘ฅ)   ยท (๐‘ฅ)   ๐‘‰(๐‘ฅ)

Proof of Theorem ovanraleqv
StepHypRef Expression
1 ovanraleqv.1 . . 3 (๐ต = ๐‘‹ โ†’ (๐œ‘ โ†” ๐œ“))
2 oveq2 5885 . . . 4 (๐ต = ๐‘‹ โ†’ (๐ด ยท ๐ต) = (๐ด ยท ๐‘‹))
32eqeq1d 2186 . . 3 (๐ต = ๐‘‹ โ†’ ((๐ด ยท ๐ต) = ๐ถ โ†” (๐ด ยท ๐‘‹) = ๐ถ))
41, 3anbi12d 473 . 2 (๐ต = ๐‘‹ โ†’ ((๐œ‘ โˆง (๐ด ยท ๐ต) = ๐ถ) โ†” (๐œ“ โˆง (๐ด ยท ๐‘‹) = ๐ถ)))
54ralbidv 2477 1 (๐ต = ๐‘‹ โ†’ (โˆ€๐‘ฅ โˆˆ ๐‘‰ (๐œ‘ โˆง (๐ด ยท ๐ต) = ๐ถ) โ†” โˆ€๐‘ฅ โˆˆ ๐‘‰ (๐œ“ โˆง (๐ด ยท ๐‘‹) = ๐ถ)))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โ†” wb 105   = wceq 1353  โˆ€wral 2455  (class class class)co 5877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5880
This theorem is referenced by:  mgmidmo  12796  ismgmid  12801  ismgmid2  12804  mgmidsssn0  12808  sgrpidmndm  12826  ismndd  12843  mnd1  12852  mhmmnd  12985
  Copyright terms: Public domain W3C validator