ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpoa Unicode version

Theorem ovmpoa 5945
Description: Value of an operation given by a maps-to rule. (Contributed by NM, 19-Dec-2013.)
Hypotheses
Ref Expression
ovmpoga.1  |-  ( ( x  =  A  /\  y  =  B )  ->  R  =  S )
ovmpoga.2  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
ovmpoa.4  |-  S  e. 
_V
Assertion
Ref Expression
ovmpoa  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, D, y   
x, S, y
Allowed substitution hints:    R( x, y)    F( x, y)

Proof of Theorem ovmpoa
StepHypRef Expression
1 ovmpoa.4 . 2  |-  S  e. 
_V
2 ovmpoga.1 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  R  =  S )
3 ovmpoga.2 . . 3  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
42, 3ovmpoga 5944 . 2  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  ->  ( A F B )  =  S )
51, 4mp3an3 1308 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   _Vcvv 2712  (class class class)co 5818    e. cmpo 5820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-setind 4494
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-iota 5132  df-fun 5169  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator