ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpoa Unicode version

Theorem ovmpoa 5983
Description: Value of an operation given by a maps-to rule. (Contributed by NM, 19-Dec-2013.)
Hypotheses
Ref Expression
ovmpoga.1  |-  ( ( x  =  A  /\  y  =  B )  ->  R  =  S )
ovmpoga.2  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
ovmpoa.4  |-  S  e. 
_V
Assertion
Ref Expression
ovmpoa  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, D, y   
x, S, y
Allowed substitution hints:    R( x, y)    F( x, y)

Proof of Theorem ovmpoa
StepHypRef Expression
1 ovmpoa.4 . 2  |-  S  e. 
_V
2 ovmpoga.1 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  R  =  S )
3 ovmpoga.2 . . 3  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
42, 3ovmpoga 5982 . 2  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  ->  ( A F B )  =  S )
51, 4mp3an3 1321 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   _Vcvv 2730  (class class class)co 5853    e. cmpo 5855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858
This theorem is referenced by:  pc0  12258
  Copyright terms: Public domain W3C validator