ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonnlem1p1 Unicode version

Theorem pitonnlem1p1 7778
Description: Lemma for pitonn 7780. Simplifying an expression involving signed reals. (Contributed by Jim Kingdon, 26-Apr-2020.)
Assertion
Ref Expression
pitonnlem1p1  |-  ( A  e.  P.  ->  [ <. ( A  +P.  ( 1P 
+P.  1P ) ) ,  ( 1P  +P.  1P ) >. ]  ~R  =  [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  )

Proof of Theorem pitonnlem1p1
StepHypRef Expression
1 1pr 7486 . . . . . 6  |-  1P  e.  P.
2 addclpr 7469 . . . . . 6  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
31, 1, 2mp2an 423 . . . . 5  |-  ( 1P 
+P.  1P )  e.  P.
4 addcomprg 7510 . . . . 5  |-  ( ( A  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( A  +P.  ( 1P  +P.  1P ) )  =  ( ( 1P 
+P.  1P )  +P.  A
) )
53, 4mpan2 422 . . . 4  |-  ( A  e.  P.  ->  ( A  +P.  ( 1P  +P.  1P ) )  =  ( ( 1P  +P.  1P )  +P.  A ) )
65oveq1d 5851 . . 3  |-  ( A  e.  P.  ->  (
( A  +P.  ( 1P  +P.  1P ) )  +P.  1P )  =  ( ( ( 1P 
+P.  1P )  +P.  A
)  +P.  1P )
)
7 addassprg 7511 . . . 4  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  A  e.  P.  /\  1P  e.  P. )  ->  ( ( ( 1P  +P.  1P )  +P.  A )  +P. 
1P )  =  ( ( 1P  +P.  1P )  +P.  ( A  +P.  1P ) ) )
83, 1, 7mp3an13 1317 . . 3  |-  ( A  e.  P.  ->  (
( ( 1P  +P.  1P )  +P.  A )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( A  +P.  1P ) ) )
96, 8eqtrd 2197 . 2  |-  ( A  e.  P.  ->  (
( A  +P.  ( 1P  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( A  +P.  1P ) ) )
10 addclpr 7469 . . . 4  |-  ( ( A  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( A  +P.  ( 1P  +P.  1P ) )  e.  P. )
113, 10mpan2 422 . . 3  |-  ( A  e.  P.  ->  ( A  +P.  ( 1P  +P.  1P ) )  e.  P. )
123a1i 9 . . 3  |-  ( A  e.  P.  ->  ( 1P  +P.  1P )  e. 
P. )
13 addclpr 7469 . . . 4  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  +P.  1P )  e.  P. )
141, 13mpan2 422 . . 3  |-  ( A  e.  P.  ->  ( A  +P.  1P )  e. 
P. )
151a1i 9 . . 3  |-  ( A  e.  P.  ->  1P  e.  P. )
16 enreceq 7668 . . 3  |-  ( ( ( ( A  +P.  ( 1P  +P.  1P ) )  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  /\  ( ( A  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. ( A  +P.  ( 1P 
+P.  1P ) ) ,  ( 1P  +P.  1P ) >. ]  ~R  =  [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( A  +P.  ( 1P  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( A  +P.  1P ) ) ) )
1711, 12, 14, 15, 16syl22anc 1228 . 2  |-  ( A  e.  P.  ->  ( [ <. ( A  +P.  ( 1P  +P.  1P ) ) ,  ( 1P 
+P.  1P ) >. ]  ~R  =  [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( A  +P.  ( 1P  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( A  +P.  1P ) ) ) )
189, 17mpbird 166 1  |-  ( A  e.  P.  ->  [ <. ( A  +P.  ( 1P 
+P.  1P ) ) ,  ( 1P  +P.  1P ) >. ]  ~R  =  [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1342    e. wcel 2135   <.cop 3573  (class class class)co 5836   [cec 6490   P.cnp 7223   1Pc1p 7224    +P. cpp 7225    ~R cer 7228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-eprel 4261  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-1o 6375  df-2o 6376  df-oadd 6379  df-omul 6380  df-er 6492  df-ec 6494  df-qs 6498  df-ni 7236  df-pli 7237  df-mi 7238  df-lti 7239  df-plpq 7276  df-mpq 7277  df-enq 7279  df-nqqs 7280  df-plqqs 7281  df-mqqs 7282  df-1nqqs 7283  df-rq 7284  df-ltnqqs 7285  df-enq0 7356  df-nq0 7357  df-0nq0 7358  df-plq0 7359  df-mq0 7360  df-inp 7398  df-i1p 7399  df-iplp 7400  df-enr 7658
This theorem is referenced by:  pitonnlem2  7779
  Copyright terms: Public domain W3C validator