ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfinfre Unicode version

Theorem dfinfre 8352
Description: The infimum of a set of reals  A. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.)
Assertion
Ref Expression
dfinfre  |-  ( A 
C_  RR  -> inf ( A ,  RR ,  <  )  =  U. { x  e.  RR  |  ( A. y  e.  A  x  <_  y  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) } )
Distinct variable group:    x, A, y, z

Proof of Theorem dfinfre
StepHypRef Expression
1 df-inf 6624 . 2  |- inf ( A ,  RR ,  <  )  =  sup ( A ,  RR ,  `'  <  )
2 df-sup 6623 . . 3  |-  sup ( A ,  RR ,  `'  <  )  =  U. { x  e.  RR  |  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  (
y `'  <  x  ->  E. z  e.  A  y `'  <  z ) ) }
3 ssel2 3009 . . . . . . . . . 10  |-  ( ( A  C_  RR  /\  y  e.  A )  ->  y  e.  RR )
4 lenlt 7505 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  <_  y  <->  -.  y  <  x ) )
5 vex 2618 . . . . . . . . . . . . 13  |-  x  e. 
_V
6 vex 2618 . . . . . . . . . . . . 13  |-  y  e. 
_V
75, 6brcnv 4587 . . . . . . . . . . . 12  |-  ( x `'  <  y  <->  y  <  x )
87notbii 627 . . . . . . . . . . 11  |-  ( -.  x `'  <  y  <->  -.  y  <  x )
94, 8syl6rbbr 197 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( -.  x `'  <  y  <->  x  <_  y ) )
103, 9sylan2 280 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  ( A  C_  RR  /\  y  e.  A )
)  ->  ( -.  x `'  <  y  <->  x  <_  y ) )
1110ancoms 264 . . . . . . . 8  |-  ( ( ( A  C_  RR  /\  y  e.  A )  /\  x  e.  RR )  ->  ( -.  x `'  <  y  <->  x  <_  y ) )
1211an32s 533 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  x  e.  RR )  /\  y  e.  A
)  ->  ( -.  x `'  <  y  <->  x  <_  y ) )
1312ralbidva 2372 . . . . . 6  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  ( A. y  e.  A  -.  x `'  <  y  <->  A. y  e.  A  x  <_  y ) )
146, 5brcnv 4587 . . . . . . . . 9  |-  ( y `'  <  x  <->  x  <  y )
15 vex 2618 . . . . . . . . . . 11  |-  z  e. 
_V
166, 15brcnv 4587 . . . . . . . . . 10  |-  ( y `'  <  z  <->  z  <  y )
1716rexbii 2381 . . . . . . . . 9  |-  ( E. z  e.  A  y `'  <  z  <->  E. z  e.  A  z  <  y )
1814, 17imbi12i 237 . . . . . . . 8  |-  ( ( y `'  <  x  ->  E. z  e.  A  y `'  <  z )  <-> 
( x  <  y  ->  E. z  e.  A  z  <  y ) )
1918ralbii 2380 . . . . . . 7  |-  ( A. y  e.  RR  (
y `'  <  x  ->  E. z  e.  A  y `'  <  z )  <->  A. y  e.  RR  ( x  <  y  ->  E. z  e.  A  z  <  y ) )
2019a1i 9 . . . . . 6  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  ( A. y  e.  RR  ( y `'  <  x  ->  E. z  e.  A  y `'  <  z )  <->  A. y  e.  RR  ( x  <  y  ->  E. z  e.  A  z  <  y ) ) )
2113, 20anbi12d 457 . . . . 5  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  (
( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  (
y `'  <  x  ->  E. z  e.  A  y `'  <  z ) )  <->  ( A. y  e.  A  x  <_  y  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) ) )
2221rabbidva 2603 . . . 4  |-  ( A 
C_  RR  ->  { x  e.  RR  |  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  (
y `'  <  x  ->  E. z  e.  A  y `'  <  z ) ) }  =  {
x  e.  RR  | 
( A. y  e.  A  x  <_  y  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  A  z  <  y ) ) } )
2322unieqd 3647 . . 3  |-  ( A 
C_  RR  ->  U. {
x  e.  RR  | 
( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  (
y `'  <  x  ->  E. z  e.  A  y `'  <  z ) ) }  =  U. { x  e.  RR  |  ( A. y  e.  A  x  <_  y  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) } )
242, 23syl5eq 2129 . 2  |-  ( A 
C_  RR  ->  sup ( A ,  RR ,  `'  <  )  =  U. { x  e.  RR  |  ( A. y  e.  A  x  <_  y  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) } )
251, 24syl5eq 2129 1  |-  ( A 
C_  RR  -> inf ( A ,  RR ,  <  )  =  U. { x  e.  RR  |  ( A. y  e.  A  x  <_  y  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1287    e. wcel 1436   A.wral 2355   E.wrex 2356   {crab 2359    C_ wss 2988   U.cuni 3636   class class class wbr 3820   `'ccnv 4410   supcsup 6621  infcinf 6622   RRcr 7293    < clt 7466    <_ cle 7467
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2617  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-br 3821  df-opab 3875  df-xp 4417  df-cnv 4419  df-sup 6623  df-inf 6624  df-xr 7470  df-le 7472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator