Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfinfre | Unicode version |
Description: The infimum of a set of reals . (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
dfinfre | inf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 6950 | . 2 inf | |
2 | df-sup 6949 | . . 3 | |
3 | ssel2 3137 | . . . . . . . . . 10 | |
4 | vex 2729 | . . . . . . . . . . . . 13 | |
5 | vex 2729 | . . . . . . . . . . . . 13 | |
6 | 4, 5 | brcnv 4787 | . . . . . . . . . . . 12 |
7 | 6 | notbii 658 | . . . . . . . . . . 11 |
8 | lenlt 7974 | . . . . . . . . . . 11 | |
9 | 7, 8 | bitr4id 198 | . . . . . . . . . 10 |
10 | 3, 9 | sylan2 284 | . . . . . . . . 9 |
11 | 10 | ancoms 266 | . . . . . . . 8 |
12 | 11 | an32s 558 | . . . . . . 7 |
13 | 12 | ralbidva 2462 | . . . . . 6 |
14 | 5, 4 | brcnv 4787 | . . . . . . . . 9 |
15 | vex 2729 | . . . . . . . . . . 11 | |
16 | 5, 15 | brcnv 4787 | . . . . . . . . . 10 |
17 | 16 | rexbii 2473 | . . . . . . . . 9 |
18 | 14, 17 | imbi12i 238 | . . . . . . . 8 |
19 | 18 | ralbii 2472 | . . . . . . 7 |
20 | 19 | a1i 9 | . . . . . 6 |
21 | 13, 20 | anbi12d 465 | . . . . 5 |
22 | 21 | rabbidva 2714 | . . . 4 |
23 | 22 | unieqd 3800 | . . 3 |
24 | 2, 23 | syl5eq 2211 | . 2 |
25 | 1, 24 | syl5eq 2211 | 1 inf |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 wrex 2445 crab 2448 wss 3116 cuni 3789 class class class wbr 3982 ccnv 4603 csup 6947 infcinf 6948 cr 7752 clt 7933 cle 7934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-sup 6949 df-inf 6950 df-xr 7937 df-le 7939 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |