| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfinfre | Unicode version | ||
| Description: The infimum of a set of
reals |
| Ref | Expression |
|---|---|
| dfinfre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 7152 |
. 2
| |
| 2 | df-sup 7151 |
. . 3
| |
| 3 | ssel2 3219 |
. . . . . . . . . 10
| |
| 4 | vex 2802 |
. . . . . . . . . . . . 13
| |
| 5 | vex 2802 |
. . . . . . . . . . . . 13
| |
| 6 | 4, 5 | brcnv 4905 |
. . . . . . . . . . . 12
|
| 7 | 6 | notbii 672 |
. . . . . . . . . . 11
|
| 8 | lenlt 8222 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | bitr4id 199 |
. . . . . . . . . 10
|
| 10 | 3, 9 | sylan2 286 |
. . . . . . . . 9
|
| 11 | 10 | ancoms 268 |
. . . . . . . 8
|
| 12 | 11 | an32s 568 |
. . . . . . 7
|
| 13 | 12 | ralbidva 2526 |
. . . . . 6
|
| 14 | 5, 4 | brcnv 4905 |
. . . . . . . . 9
|
| 15 | vex 2802 |
. . . . . . . . . . 11
| |
| 16 | 5, 15 | brcnv 4905 |
. . . . . . . . . 10
|
| 17 | 16 | rexbii 2537 |
. . . . . . . . 9
|
| 18 | 14, 17 | imbi12i 239 |
. . . . . . . 8
|
| 19 | 18 | ralbii 2536 |
. . . . . . 7
|
| 20 | 19 | a1i 9 |
. . . . . 6
|
| 21 | 13, 20 | anbi12d 473 |
. . . . 5
|
| 22 | 21 | rabbidva 2787 |
. . . 4
|
| 23 | 22 | unieqd 3899 |
. . 3
|
| 24 | 2, 23 | eqtrid 2274 |
. 2
|
| 25 | 1, 24 | eqtrid 2274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-sup 7151 df-inf 7152 df-xr 8185 df-le 8187 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |