| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfinfre | Unicode version | ||
| Description: The infimum of a set of
reals |
| Ref | Expression |
|---|---|
| dfinfre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 7051 |
. 2
| |
| 2 | df-sup 7050 |
. . 3
| |
| 3 | ssel2 3178 |
. . . . . . . . . 10
| |
| 4 | vex 2766 |
. . . . . . . . . . . . 13
| |
| 5 | vex 2766 |
. . . . . . . . . . . . 13
| |
| 6 | 4, 5 | brcnv 4849 |
. . . . . . . . . . . 12
|
| 7 | 6 | notbii 669 |
. . . . . . . . . . 11
|
| 8 | lenlt 8102 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | bitr4id 199 |
. . . . . . . . . 10
|
| 10 | 3, 9 | sylan2 286 |
. . . . . . . . 9
|
| 11 | 10 | ancoms 268 |
. . . . . . . 8
|
| 12 | 11 | an32s 568 |
. . . . . . 7
|
| 13 | 12 | ralbidva 2493 |
. . . . . 6
|
| 14 | 5, 4 | brcnv 4849 |
. . . . . . . . 9
|
| 15 | vex 2766 |
. . . . . . . . . . 11
| |
| 16 | 5, 15 | brcnv 4849 |
. . . . . . . . . 10
|
| 17 | 16 | rexbii 2504 |
. . . . . . . . 9
|
| 18 | 14, 17 | imbi12i 239 |
. . . . . . . 8
|
| 19 | 18 | ralbii 2503 |
. . . . . . 7
|
| 20 | 19 | a1i 9 |
. . . . . 6
|
| 21 | 13, 20 | anbi12d 473 |
. . . . 5
|
| 22 | 21 | rabbidva 2751 |
. . . 4
|
| 23 | 22 | unieqd 3850 |
. . 3
|
| 24 | 2, 23 | eqtrid 2241 |
. 2
|
| 25 | 1, 24 | eqtrid 2241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-sup 7050 df-inf 7051 df-xr 8065 df-le 8067 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |