| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfinfre | Unicode version | ||
| Description: The infimum of a set of
reals |
| Ref | Expression |
|---|---|
| dfinfre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 7113 |
. 2
| |
| 2 | df-sup 7112 |
. . 3
| |
| 3 | ssel2 3196 |
. . . . . . . . . 10
| |
| 4 | vex 2779 |
. . . . . . . . . . . . 13
| |
| 5 | vex 2779 |
. . . . . . . . . . . . 13
| |
| 6 | 4, 5 | brcnv 4879 |
. . . . . . . . . . . 12
|
| 7 | 6 | notbii 670 |
. . . . . . . . . . 11
|
| 8 | lenlt 8183 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | bitr4id 199 |
. . . . . . . . . 10
|
| 10 | 3, 9 | sylan2 286 |
. . . . . . . . 9
|
| 11 | 10 | ancoms 268 |
. . . . . . . 8
|
| 12 | 11 | an32s 568 |
. . . . . . 7
|
| 13 | 12 | ralbidva 2504 |
. . . . . 6
|
| 14 | 5, 4 | brcnv 4879 |
. . . . . . . . 9
|
| 15 | vex 2779 |
. . . . . . . . . . 11
| |
| 16 | 5, 15 | brcnv 4879 |
. . . . . . . . . 10
|
| 17 | 16 | rexbii 2515 |
. . . . . . . . 9
|
| 18 | 14, 17 | imbi12i 239 |
. . . . . . . 8
|
| 19 | 18 | ralbii 2514 |
. . . . . . 7
|
| 20 | 19 | a1i 9 |
. . . . . 6
|
| 21 | 13, 20 | anbi12d 473 |
. . . . 5
|
| 22 | 21 | rabbidva 2764 |
. . . 4
|
| 23 | 22 | unieqd 3875 |
. . 3
|
| 24 | 2, 23 | eqtrid 2252 |
. 2
|
| 25 | 1, 24 | eqtrid 2252 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-sup 7112 df-inf 7113 df-xr 8146 df-le 8148 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |