ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnniniseg2 Unicode version

Theorem fnniniseg2 5726
Description: Support sets of functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fnniniseg2  |-  ( F  Fn  A  ->  ( `' F " ( _V 
\  { B }
) )  =  {
x  e.  A  | 
( F `  x
)  =/=  B }
)
Distinct variable groups:    x, A    x, F    x, B

Proof of Theorem fnniniseg2
StepHypRef Expression
1 fncnvima2 5724 . 2  |-  ( F  Fn  A  ->  ( `' F " ( _V 
\  { B }
) )  =  {
x  e.  A  | 
( F `  x
)  e.  ( _V 
\  { B }
) } )
2 eldifsn 3771 . . . 4  |-  ( ( F `  x )  e.  ( _V  \  { B } )  <->  ( ( F `  x )  e.  _V  /\  ( F `
 x )  =/= 
B ) )
3 funfvex 5616 . . . . . 6  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
43funfni 5395 . . . . 5  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  e.  _V )
54biantrurd 305 . . . 4  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =/=  B  <->  ( ( F `  x
)  e.  _V  /\  ( F `  x )  =/=  B ) ) )
62, 5bitr4id 199 . . 3  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  e.  ( _V  \  { B } )  <->  ( F `  x )  =/=  B
) )
76rabbidva 2764 . 2  |-  ( F  Fn  A  ->  { x  e.  A  |  ( F `  x )  e.  ( _V  \  { B } ) }  =  { x  e.  A  |  ( F `  x )  =/=  B } )
81, 7eqtrd 2240 1  |-  ( F  Fn  A  ->  ( `' F " ( _V 
\  { B }
) )  =  {
x  e.  A  | 
( F `  x
)  =/=  B }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    =/= wne 2378   {crab 2490   _Vcvv 2776    \ cdif 3171   {csn 3643   `'ccnv 4692   "cima 4696    Fn wfn 5285   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator