ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnniniseg2 Unicode version

Theorem fnniniseg2 5642
Description: Support sets of functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fnniniseg2  |-  ( F  Fn  A  ->  ( `' F " ( _V 
\  { B }
) )  =  {
x  e.  A  | 
( F `  x
)  =/=  B }
)
Distinct variable groups:    x, A    x, F    x, B

Proof of Theorem fnniniseg2
StepHypRef Expression
1 fncnvima2 5640 . 2  |-  ( F  Fn  A  ->  ( `' F " ( _V 
\  { B }
) )  =  {
x  e.  A  | 
( F `  x
)  e.  ( _V 
\  { B }
) } )
2 eldifsn 3721 . . . 4  |-  ( ( F `  x )  e.  ( _V  \  { B } )  <->  ( ( F `  x )  e.  _V  /\  ( F `
 x )  =/= 
B ) )
3 funfvex 5534 . . . . . 6  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
43funfni 5318 . . . . 5  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  e.  _V )
54biantrurd 305 . . . 4  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =/=  B  <->  ( ( F `  x
)  e.  _V  /\  ( F `  x )  =/=  B ) ) )
62, 5bitr4id 199 . . 3  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  e.  ( _V  \  { B } )  <->  ( F `  x )  =/=  B
) )
76rabbidva 2727 . 2  |-  ( F  Fn  A  ->  { x  e.  A  |  ( F `  x )  e.  ( _V  \  { B } ) }  =  { x  e.  A  |  ( F `  x )  =/=  B } )
81, 7eqtrd 2210 1  |-  ( F  Fn  A  ->  ( `' F " ( _V 
\  { B }
) )  =  {
x  e.  A  | 
( F `  x
)  =/=  B }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148    =/= wne 2347   {crab 2459   _Vcvv 2739    \ cdif 3128   {csn 3594   `'ccnv 4627   "cima 4631    Fn wfn 5213   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator