Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nconstwlpolem Unicode version

Theorem nconstwlpolem 15218
Description: Lemma for nconstwlpo 15219. (Contributed by Jim Kingdon, 23-Jul-2024.)
Hypotheses
Ref Expression
nconstwlpo.f  |-  ( ph  ->  F : RR --> ZZ )
nconstwlpo.0  |-  ( ph  ->  ( F `  0
)  =  0 )
nconstwlpo.rp  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( F `  x )  =/=  0
)
nconstwlpo.g  |-  ( ph  ->  G : NN --> { 0 ,  1 } )
nconstwlpo.a  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
)
Assertion
Ref Expression
nconstwlpolem  |-  ( ph  ->  ( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
Distinct variable groups:    x, A    y, A    x, F    y, F    i, G, y    ph, x    ph, y, i
Allowed substitution hints:    A( i)    F( i)    G( x)

Proof of Theorem nconstwlpolem
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 breq2 4022 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
0  <  x  <->  0  <  A ) )
2 fveq2 5531 . . . . . . . . . . . . 13  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
32neeq1d 2378 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
( F `  x
)  =/=  0  <->  ( F `  A )  =/=  0 ) )
41, 3imbi12d 234 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
( 0  <  x  ->  ( F `  x
)  =/=  0 )  <-> 
( 0  <  A  ->  ( F `  A
)  =/=  0 ) ) )
5 elrp 9675 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  <->  ( x  e.  RR  /\  0  < 
x ) )
6 nconstwlpo.rp . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( F `  x )  =/=  0
)
75, 6sylan2br 288 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR  /\  0  < 
x ) )  -> 
( F `  x
)  =/=  0 )
87expr 375 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  ( 0  <  x  ->  ( F `  x )  =/=  0 ) )
98ralrimiva 2563 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  RR  ( 0  <  x  ->  ( F `  x
)  =/=  0 ) )
10 nconstwlpo.g . . . . . . . . . . . 12  |-  ( ph  ->  G : NN --> { 0 ,  1 } )
11 nconstwlpo.a . . . . . . . . . . . 12  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
)
1210, 11trilpolemcl 15190 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
134, 9, 12rspcdva 2861 . . . . . . . . . 10  |-  ( ph  ->  ( 0  <  A  ->  ( F `  A
)  =/=  0 ) )
1413necon2bd 2418 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  A )  =  0  ->  -.  0  <  A ) )
1514imp 124 . . . . . . . 8  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  -.  0  <  A )
1610adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  E. y  e.  NN  ( G `  y )  =  1 )  ->  G : NN
--> { 0 ,  1 } )
17 simpr 110 . . . . . . . . . . . . 13  |-  ( (
ph  /\  E. y  e.  NN  ( G `  y )  =  1 )  ->  E. y  e.  NN  ( G `  y )  =  1 )
18 fveqeq2 5540 . . . . . . . . . . . . . 14  |-  ( y  =  a  ->  (
( G `  y
)  =  1  <->  ( G `  a )  =  1 ) )
1918cbvrexv 2719 . . . . . . . . . . . . 13  |-  ( E. y  e.  NN  ( G `  y )  =  1  <->  E. a  e.  NN  ( G `  a )  =  1 )
2017, 19sylib 122 . . . . . . . . . . . 12  |-  ( (
ph  /\  E. y  e.  NN  ( G `  y )  =  1 )  ->  E. a  e.  NN  ( G `  a )  =  1 )
2116, 11, 20nconstwlpolemgt0 15217 . . . . . . . . . . 11  |-  ( (
ph  /\  E. y  e.  NN  ( G `  y )  =  1 )  ->  0  <  A )
2221ex 115 . . . . . . . . . 10  |-  ( ph  ->  ( E. y  e.  NN  ( G `  y )  =  1  ->  0  <  A
) )
2322con3d 632 . . . . . . . . 9  |-  ( ph  ->  ( -.  0  < 
A  ->  -.  E. y  e.  NN  ( G `  y )  =  1 ) )
2423adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  ( -.  0  <  A  ->  -.  E. y  e.  NN  ( G `  y )  =  1 ) )
2515, 24mpd 13 . . . . . . 7  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  -.  E. y  e.  NN  ( G `  y )  =  1 )
26 ralnex 2478 . . . . . . 7  |-  ( A. y  e.  NN  -.  ( G `  y )  =  1  <->  -.  E. y  e.  NN  ( G `  y )  =  1 )
2725, 26sylibr 134 . . . . . 6  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  A. y  e.  NN  -.  ( G `
 y )  =  1 )
2827r19.21bi 2578 . . . . 5  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  -.  ( G `  y )  =  1 )
2910ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  G : NN --> { 0 ,  1 } )
30 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  y  e.  NN )
3129, 30ffvelcdmd 5669 . . . . . 6  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  ( G `  y
)  e.  { 0 ,  1 } )
32 elpri 3630 . . . . . 6  |-  ( ( G `  y )  e.  { 0 ,  1 }  ->  (
( G `  y
)  =  0  \/  ( G `  y
)  =  1 ) )
3331, 32syl 14 . . . . 5  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  ( ( G `  y )  =  0  \/  ( G `  y )  =  1 ) )
3428, 33ecased 1360 . . . 4  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  ( G `  y
)  =  0 )
3534ralrimiva 2563 . . 3  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  A. y  e.  NN  ( G `  y )  =  0 )
3635orcd 734 . 2  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  ( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
3710adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  G : NN
--> { 0 ,  1 } )
38 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  A. y  e.  NN  ( G `  y )  =  0 )
3937, 11, 38nconstwlpolem0 15216 . . . . . . . 8  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  A  = 
0 )
4039fveq2d 5535 . . . . . . 7  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  ( F `  A )  =  ( F `  0 ) )
41 nconstwlpo.0 . . . . . . . 8  |-  ( ph  ->  ( F `  0
)  =  0 )
4241adantr 276 . . . . . . 7  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  ( F `  0 )  =  0 )
4340, 42eqtrd 2222 . . . . . 6  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  ( F `  A )  =  0 )
4443ex 115 . . . . 5  |-  ( ph  ->  ( A. y  e.  NN  ( G `  y )  =  0  ->  ( F `  A )  =  0 ) )
4544con3d 632 . . . 4  |-  ( ph  ->  ( -.  ( F `
 A )  =  0  ->  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
4645imp 124 . . 3  |-  ( (
ph  /\  -.  ( F `  A )  =  0 )  ->  -.  A. y  e.  NN  ( G `  y )  =  0 )
4746olcd 735 . 2  |-  ( (
ph  /\  -.  ( F `  A )  =  0 )  -> 
( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
48 nconstwlpo.f . . . . 5  |-  ( ph  ->  F : RR --> ZZ )
4948, 12ffvelcdmd 5669 . . . 4  |-  ( ph  ->  ( F `  A
)  e.  ZZ )
50 0z 9284 . . . 4  |-  0  e.  ZZ
51 zdceq 9348 . . . 4  |-  ( ( ( F `  A
)  e.  ZZ  /\  0  e.  ZZ )  -> DECID  ( F `  A )  =  0 )
5249, 50, 51sylancl 413 . . 3  |-  ( ph  -> DECID  ( F `  A )  =  0 )
53 exmiddc 837 . . 3  |-  (DECID  ( F `
 A )  =  0  ->  ( ( F `  A )  =  0  \/  -.  ( F `  A )  =  0 ) )
5452, 53syl 14 . 2  |-  ( ph  ->  ( ( F `  A )  =  0  \/  -.  ( F `
 A )  =  0 ) )
5536, 47, 54mpjaodan 799 1  |-  ( ph  ->  ( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2160    =/= wne 2360   A.wral 2468   E.wrex 2469   {cpr 3608   class class class wbr 4018   -->wf 5228   ` cfv 5232  (class class class)co 5892   RRcr 7830   0cc0 7831   1c1 7832    x. cmul 7836    < clt 8012    / cdiv 8649   NNcn 8939   2c2 8990   ZZcz 9273   RR+crp 9673   ^cexp 10539   sum_csu 11381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7922  ax-resscn 7923  ax-1cn 7924  ax-1re 7925  ax-icn 7926  ax-addcl 7927  ax-addrcl 7928  ax-mulcl 7929  ax-mulrcl 7930  ax-addcom 7931  ax-mulcom 7932  ax-addass 7933  ax-mulass 7934  ax-distr 7935  ax-i2m1 7936  ax-0lt1 7937  ax-1rid 7938  ax-0id 7939  ax-rnegex 7940  ax-precex 7941  ax-cnre 7942  ax-pre-ltirr 7943  ax-pre-ltwlin 7944  ax-pre-lttrn 7945  ax-pre-apti 7946  ax-pre-ltadd 7947  ax-pre-mulgt0 7948  ax-pre-mulext 7949  ax-arch 7950  ax-caucvg 7951
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-isom 5241  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-1st 6160  df-2nd 6161  df-recs 6325  df-irdg 6390  df-frec 6411  df-1o 6436  df-oadd 6440  df-er 6554  df-en 6760  df-dom 6761  df-fin 6762  df-pnf 8014  df-mnf 8015  df-xr 8016  df-ltxr 8017  df-le 8018  df-sub 8150  df-neg 8151  df-reap 8552  df-ap 8559  df-div 8650  df-inn 8940  df-2 8998  df-3 8999  df-4 9000  df-n0 9197  df-z 9274  df-uz 9549  df-q 9640  df-rp 9674  df-ico 9914  df-fz 10029  df-fzo 10163  df-seqfrec 10466  df-exp 10540  df-ihash 10776  df-cj 10871  df-re 10872  df-im 10873  df-rsqrt 11027  df-abs 11028  df-clim 11307  df-sumdc 11382
This theorem is referenced by:  nconstwlpo  15219
  Copyright terms: Public domain W3C validator