Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nconstwlpolem Unicode version

Theorem nconstwlpolem 14096
Description: Lemma for nconstwlpo 14097. (Contributed by Jim Kingdon, 23-Jul-2024.)
Hypotheses
Ref Expression
nconstwlpo.f  |-  ( ph  ->  F : RR --> ZZ )
nconstwlpo.0  |-  ( ph  ->  ( F `  0
)  =  0 )
nconstwlpo.rp  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( F `  x )  =/=  0
)
nconstwlpo.g  |-  ( ph  ->  G : NN --> { 0 ,  1 } )
nconstwlpo.a  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
)
Assertion
Ref Expression
nconstwlpolem  |-  ( ph  ->  ( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
Distinct variable groups:    x, A    y, A    x, F    y, F    i, G, y    ph, x    ph, y, i
Allowed substitution hints:    A( i)    F( i)    G( x)

Proof of Theorem nconstwlpolem
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 breq2 3993 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
0  <  x  <->  0  <  A ) )
2 fveq2 5496 . . . . . . . . . . . . 13  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
32neeq1d 2358 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
( F `  x
)  =/=  0  <->  ( F `  A )  =/=  0 ) )
41, 3imbi12d 233 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
( 0  <  x  ->  ( F `  x
)  =/=  0 )  <-> 
( 0  <  A  ->  ( F `  A
)  =/=  0 ) ) )
5 elrp 9612 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  <->  ( x  e.  RR  /\  0  < 
x ) )
6 nconstwlpo.rp . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( F `  x )  =/=  0
)
75, 6sylan2br 286 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR  /\  0  < 
x ) )  -> 
( F `  x
)  =/=  0 )
87expr 373 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  ( 0  <  x  ->  ( F `  x )  =/=  0 ) )
98ralrimiva 2543 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  RR  ( 0  <  x  ->  ( F `  x
)  =/=  0 ) )
10 nconstwlpo.g . . . . . . . . . . . 12  |-  ( ph  ->  G : NN --> { 0 ,  1 } )
11 nconstwlpo.a . . . . . . . . . . . 12  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
)
1210, 11trilpolemcl 14069 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
134, 9, 12rspcdva 2839 . . . . . . . . . 10  |-  ( ph  ->  ( 0  <  A  ->  ( F `  A
)  =/=  0 ) )
1413necon2bd 2398 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  A )  =  0  ->  -.  0  <  A ) )
1514imp 123 . . . . . . . 8  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  -.  0  <  A )
1610adantr 274 . . . . . . . . . . . 12  |-  ( (
ph  /\  E. y  e.  NN  ( G `  y )  =  1 )  ->  G : NN
--> { 0 ,  1 } )
17 simpr 109 . . . . . . . . . . . . 13  |-  ( (
ph  /\  E. y  e.  NN  ( G `  y )  =  1 )  ->  E. y  e.  NN  ( G `  y )  =  1 )
18 fveqeq2 5505 . . . . . . . . . . . . . 14  |-  ( y  =  a  ->  (
( G `  y
)  =  1  <->  ( G `  a )  =  1 ) )
1918cbvrexv 2697 . . . . . . . . . . . . 13  |-  ( E. y  e.  NN  ( G `  y )  =  1  <->  E. a  e.  NN  ( G `  a )  =  1 )
2017, 19sylib 121 . . . . . . . . . . . 12  |-  ( (
ph  /\  E. y  e.  NN  ( G `  y )  =  1 )  ->  E. a  e.  NN  ( G `  a )  =  1 )
2116, 11, 20nconstwlpolemgt0 14095 . . . . . . . . . . 11  |-  ( (
ph  /\  E. y  e.  NN  ( G `  y )  =  1 )  ->  0  <  A )
2221ex 114 . . . . . . . . . 10  |-  ( ph  ->  ( E. y  e.  NN  ( G `  y )  =  1  ->  0  <  A
) )
2322con3d 626 . . . . . . . . 9  |-  ( ph  ->  ( -.  0  < 
A  ->  -.  E. y  e.  NN  ( G `  y )  =  1 ) )
2423adantr 274 . . . . . . . 8  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  ( -.  0  <  A  ->  -.  E. y  e.  NN  ( G `  y )  =  1 ) )
2515, 24mpd 13 . . . . . . 7  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  -.  E. y  e.  NN  ( G `  y )  =  1 )
26 ralnex 2458 . . . . . . 7  |-  ( A. y  e.  NN  -.  ( G `  y )  =  1  <->  -.  E. y  e.  NN  ( G `  y )  =  1 )
2725, 26sylibr 133 . . . . . 6  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  A. y  e.  NN  -.  ( G `
 y )  =  1 )
2827r19.21bi 2558 . . . . 5  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  -.  ( G `  y )  =  1 )
2910ad2antrr 485 . . . . . . 7  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  G : NN --> { 0 ,  1 } )
30 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  y  e.  NN )
3129, 30ffvelrnd 5632 . . . . . 6  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  ( G `  y
)  e.  { 0 ,  1 } )
32 elpri 3606 . . . . . 6  |-  ( ( G `  y )  e.  { 0 ,  1 }  ->  (
( G `  y
)  =  0  \/  ( G `  y
)  =  1 ) )
3331, 32syl 14 . . . . 5  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  ( ( G `  y )  =  0  \/  ( G `  y )  =  1 ) )
3428, 33ecased 1344 . . . 4  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  ( G `  y
)  =  0 )
3534ralrimiva 2543 . . 3  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  A. y  e.  NN  ( G `  y )  =  0 )
3635orcd 728 . 2  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  ( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
3710adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  G : NN
--> { 0 ,  1 } )
38 simpr 109 . . . . . . . . 9  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  A. y  e.  NN  ( G `  y )  =  0 )
3937, 11, 38nconstwlpolem0 14094 . . . . . . . 8  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  A  = 
0 )
4039fveq2d 5500 . . . . . . 7  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  ( F `  A )  =  ( F `  0 ) )
41 nconstwlpo.0 . . . . . . . 8  |-  ( ph  ->  ( F `  0
)  =  0 )
4241adantr 274 . . . . . . 7  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  ( F `  0 )  =  0 )
4340, 42eqtrd 2203 . . . . . 6  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  ( F `  A )  =  0 )
4443ex 114 . . . . 5  |-  ( ph  ->  ( A. y  e.  NN  ( G `  y )  =  0  ->  ( F `  A )  =  0 ) )
4544con3d 626 . . . 4  |-  ( ph  ->  ( -.  ( F `
 A )  =  0  ->  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
4645imp 123 . . 3  |-  ( (
ph  /\  -.  ( F `  A )  =  0 )  ->  -.  A. y  e.  NN  ( G `  y )  =  0 )
4746olcd 729 . 2  |-  ( (
ph  /\  -.  ( F `  A )  =  0 )  -> 
( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
48 nconstwlpo.f . . . . 5  |-  ( ph  ->  F : RR --> ZZ )
4948, 12ffvelrnd 5632 . . . 4  |-  ( ph  ->  ( F `  A
)  e.  ZZ )
50 0z 9223 . . . 4  |-  0  e.  ZZ
51 zdceq 9287 . . . 4  |-  ( ( ( F `  A
)  e.  ZZ  /\  0  e.  ZZ )  -> DECID  ( F `  A )  =  0 )
5249, 50, 51sylancl 411 . . 3  |-  ( ph  -> DECID  ( F `  A )  =  0 )
53 exmiddc 831 . . 3  |-  (DECID  ( F `
 A )  =  0  ->  ( ( F `  A )  =  0  \/  -.  ( F `  A )  =  0 ) )
5452, 53syl 14 . 2  |-  ( ph  ->  ( ( F `  A )  =  0  \/  -.  ( F `
 A )  =  0 ) )
5536, 47, 54mpjaodan 793 1  |-  ( ph  ->  ( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703  DECID wdc 829    = wceq 1348    e. wcel 2141    =/= wne 2340   A.wral 2448   E.wrex 2449   {cpr 3584   class class class wbr 3989   -->wf 5194   ` cfv 5198  (class class class)co 5853   RRcr 7773   0cc0 7774   1c1 7775    x. cmul 7779    < clt 7954    / cdiv 8589   NNcn 8878   2c2 8929   ZZcz 9212   RR+crp 9610   ^cexp 10475   sum_csu 11316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-ico 9851  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317
This theorem is referenced by:  nconstwlpo  14097
  Copyright terms: Public domain W3C validator