Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nconstwlpolem Unicode version

Theorem nconstwlpolem 13943
Description: Lemma for nconstwlpo 13944. (Contributed by Jim Kingdon, 23-Jul-2024.)
Hypotheses
Ref Expression
nconstwlpo.f  |-  ( ph  ->  F : RR --> ZZ )
nconstwlpo.0  |-  ( ph  ->  ( F `  0
)  =  0 )
nconstwlpo.rp  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( F `  x )  =/=  0
)
nconstwlpo.g  |-  ( ph  ->  G : NN --> { 0 ,  1 } )
nconstwlpo.a  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
)
Assertion
Ref Expression
nconstwlpolem  |-  ( ph  ->  ( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
Distinct variable groups:    x, A    y, A    x, F    y, F    i, G, y    ph, x    ph, y, i
Allowed substitution hints:    A( i)    F( i)    G( x)

Proof of Theorem nconstwlpolem
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 breq2 3986 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
0  <  x  <->  0  <  A ) )
2 fveq2 5486 . . . . . . . . . . . . 13  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
32neeq1d 2354 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
( F `  x
)  =/=  0  <->  ( F `  A )  =/=  0 ) )
41, 3imbi12d 233 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
( 0  <  x  ->  ( F `  x
)  =/=  0 )  <-> 
( 0  <  A  ->  ( F `  A
)  =/=  0 ) ) )
5 elrp 9591 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  <->  ( x  e.  RR  /\  0  < 
x ) )
6 nconstwlpo.rp . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( F `  x )  =/=  0
)
75, 6sylan2br 286 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR  /\  0  < 
x ) )  -> 
( F `  x
)  =/=  0 )
87expr 373 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  ( 0  <  x  ->  ( F `  x )  =/=  0 ) )
98ralrimiva 2539 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  RR  ( 0  <  x  ->  ( F `  x
)  =/=  0 ) )
10 nconstwlpo.g . . . . . . . . . . . 12  |-  ( ph  ->  G : NN --> { 0 ,  1 } )
11 nconstwlpo.a . . . . . . . . . . . 12  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
)
1210, 11trilpolemcl 13916 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
134, 9, 12rspcdva 2835 . . . . . . . . . 10  |-  ( ph  ->  ( 0  <  A  ->  ( F `  A
)  =/=  0 ) )
1413necon2bd 2394 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  A )  =  0  ->  -.  0  <  A ) )
1514imp 123 . . . . . . . 8  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  -.  0  <  A )
1610adantr 274 . . . . . . . . . . . 12  |-  ( (
ph  /\  E. y  e.  NN  ( G `  y )  =  1 )  ->  G : NN
--> { 0 ,  1 } )
17 simpr 109 . . . . . . . . . . . . 13  |-  ( (
ph  /\  E. y  e.  NN  ( G `  y )  =  1 )  ->  E. y  e.  NN  ( G `  y )  =  1 )
18 fveqeq2 5495 . . . . . . . . . . . . . 14  |-  ( y  =  a  ->  (
( G `  y
)  =  1  <->  ( G `  a )  =  1 ) )
1918cbvrexv 2693 . . . . . . . . . . . . 13  |-  ( E. y  e.  NN  ( G `  y )  =  1  <->  E. a  e.  NN  ( G `  a )  =  1 )
2017, 19sylib 121 . . . . . . . . . . . 12  |-  ( (
ph  /\  E. y  e.  NN  ( G `  y )  =  1 )  ->  E. a  e.  NN  ( G `  a )  =  1 )
2116, 11, 20nconstwlpolemgt0 13942 . . . . . . . . . . 11  |-  ( (
ph  /\  E. y  e.  NN  ( G `  y )  =  1 )  ->  0  <  A )
2221ex 114 . . . . . . . . . 10  |-  ( ph  ->  ( E. y  e.  NN  ( G `  y )  =  1  ->  0  <  A
) )
2322con3d 621 . . . . . . . . 9  |-  ( ph  ->  ( -.  0  < 
A  ->  -.  E. y  e.  NN  ( G `  y )  =  1 ) )
2423adantr 274 . . . . . . . 8  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  ( -.  0  <  A  ->  -.  E. y  e.  NN  ( G `  y )  =  1 ) )
2515, 24mpd 13 . . . . . . 7  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  -.  E. y  e.  NN  ( G `  y )  =  1 )
26 ralnex 2454 . . . . . . 7  |-  ( A. y  e.  NN  -.  ( G `  y )  =  1  <->  -.  E. y  e.  NN  ( G `  y )  =  1 )
2725, 26sylibr 133 . . . . . 6  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  A. y  e.  NN  -.  ( G `
 y )  =  1 )
2827r19.21bi 2554 . . . . 5  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  -.  ( G `  y )  =  1 )
2910ad2antrr 480 . . . . . . 7  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  G : NN --> { 0 ,  1 } )
30 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  y  e.  NN )
3129, 30ffvelrnd 5621 . . . . . 6  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  ( G `  y
)  e.  { 0 ,  1 } )
32 elpri 3599 . . . . . 6  |-  ( ( G `  y )  e.  { 0 ,  1 }  ->  (
( G `  y
)  =  0  \/  ( G `  y
)  =  1 ) )
3331, 32syl 14 . . . . 5  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  ( ( G `  y )  =  0  \/  ( G `  y )  =  1 ) )
3428, 33ecased 1339 . . . 4  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  ( G `  y
)  =  0 )
3534ralrimiva 2539 . . 3  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  A. y  e.  NN  ( G `  y )  =  0 )
3635orcd 723 . 2  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  ( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
3710adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  G : NN
--> { 0 ,  1 } )
38 simpr 109 . . . . . . . . 9  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  A. y  e.  NN  ( G `  y )  =  0 )
3937, 11, 38nconstwlpolem0 13941 . . . . . . . 8  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  A  = 
0 )
4039fveq2d 5490 . . . . . . 7  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  ( F `  A )  =  ( F `  0 ) )
41 nconstwlpo.0 . . . . . . . 8  |-  ( ph  ->  ( F `  0
)  =  0 )
4241adantr 274 . . . . . . 7  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  ( F `  0 )  =  0 )
4340, 42eqtrd 2198 . . . . . 6  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  ( F `  A )  =  0 )
4443ex 114 . . . . 5  |-  ( ph  ->  ( A. y  e.  NN  ( G `  y )  =  0  ->  ( F `  A )  =  0 ) )
4544con3d 621 . . . 4  |-  ( ph  ->  ( -.  ( F `
 A )  =  0  ->  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
4645imp 123 . . 3  |-  ( (
ph  /\  -.  ( F `  A )  =  0 )  ->  -.  A. y  e.  NN  ( G `  y )  =  0 )
4746olcd 724 . 2  |-  ( (
ph  /\  -.  ( F `  A )  =  0 )  -> 
( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
48 nconstwlpo.f . . . . 5  |-  ( ph  ->  F : RR --> ZZ )
4948, 12ffvelrnd 5621 . . . 4  |-  ( ph  ->  ( F `  A
)  e.  ZZ )
50 0z 9202 . . . 4  |-  0  e.  ZZ
51 zdceq 9266 . . . 4  |-  ( ( ( F `  A
)  e.  ZZ  /\  0  e.  ZZ )  -> DECID  ( F `  A )  =  0 )
5249, 50, 51sylancl 410 . . 3  |-  ( ph  -> DECID  ( F `  A )  =  0 )
53 exmiddc 826 . . 3  |-  (DECID  ( F `
 A )  =  0  ->  ( ( F `  A )  =  0  \/  -.  ( F `  A )  =  0 ) )
5452, 53syl 14 . 2  |-  ( ph  ->  ( ( F `  A )  =  0  \/  -.  ( F `
 A )  =  0 ) )
5536, 47, 54mpjaodan 788 1  |-  ( ph  ->  ( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824    = wceq 1343    e. wcel 2136    =/= wne 2336   A.wral 2444   E.wrex 2445   {cpr 3577   class class class wbr 3982   -->wf 5184   ` cfv 5188  (class class class)co 5842   RRcr 7752   0cc0 7753   1c1 7754    x. cmul 7758    < clt 7933    / cdiv 8568   NNcn 8857   2c2 8908   ZZcz 9191   RR+crp 9589   ^cexp 10454   sum_csu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  nconstwlpo  13944
  Copyright terms: Public domain W3C validator