Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nconstwlpolem Unicode version

Theorem nconstwlpolem 15002
Description: Lemma for nconstwlpo 15003. (Contributed by Jim Kingdon, 23-Jul-2024.)
Hypotheses
Ref Expression
nconstwlpo.f  |-  ( ph  ->  F : RR --> ZZ )
nconstwlpo.0  |-  ( ph  ->  ( F `  0
)  =  0 )
nconstwlpo.rp  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( F `  x )  =/=  0
)
nconstwlpo.g  |-  ( ph  ->  G : NN --> { 0 ,  1 } )
nconstwlpo.a  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
)
Assertion
Ref Expression
nconstwlpolem  |-  ( ph  ->  ( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
Distinct variable groups:    x, A    y, A    x, F    y, F    i, G, y    ph, x    ph, y, i
Allowed substitution hints:    A( i)    F( i)    G( x)

Proof of Theorem nconstwlpolem
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 breq2 4009 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
0  <  x  <->  0  <  A ) )
2 fveq2 5517 . . . . . . . . . . . . 13  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
32neeq1d 2365 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
( F `  x
)  =/=  0  <->  ( F `  A )  =/=  0 ) )
41, 3imbi12d 234 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
( 0  <  x  ->  ( F `  x
)  =/=  0 )  <-> 
( 0  <  A  ->  ( F `  A
)  =/=  0 ) ) )
5 elrp 9658 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  <->  ( x  e.  RR  /\  0  < 
x ) )
6 nconstwlpo.rp . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( F `  x )  =/=  0
)
75, 6sylan2br 288 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR  /\  0  < 
x ) )  -> 
( F `  x
)  =/=  0 )
87expr 375 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  ( 0  <  x  ->  ( F `  x )  =/=  0 ) )
98ralrimiva 2550 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  RR  ( 0  <  x  ->  ( F `  x
)  =/=  0 ) )
10 nconstwlpo.g . . . . . . . . . . . 12  |-  ( ph  ->  G : NN --> { 0 ,  1 } )
11 nconstwlpo.a . . . . . . . . . . . 12  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
)
1210, 11trilpolemcl 14974 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
134, 9, 12rspcdva 2848 . . . . . . . . . 10  |-  ( ph  ->  ( 0  <  A  ->  ( F `  A
)  =/=  0 ) )
1413necon2bd 2405 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  A )  =  0  ->  -.  0  <  A ) )
1514imp 124 . . . . . . . 8  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  -.  0  <  A )
1610adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  E. y  e.  NN  ( G `  y )  =  1 )  ->  G : NN
--> { 0 ,  1 } )
17 simpr 110 . . . . . . . . . . . . 13  |-  ( (
ph  /\  E. y  e.  NN  ( G `  y )  =  1 )  ->  E. y  e.  NN  ( G `  y )  =  1 )
18 fveqeq2 5526 . . . . . . . . . . . . . 14  |-  ( y  =  a  ->  (
( G `  y
)  =  1  <->  ( G `  a )  =  1 ) )
1918cbvrexv 2706 . . . . . . . . . . . . 13  |-  ( E. y  e.  NN  ( G `  y )  =  1  <->  E. a  e.  NN  ( G `  a )  =  1 )
2017, 19sylib 122 . . . . . . . . . . . 12  |-  ( (
ph  /\  E. y  e.  NN  ( G `  y )  =  1 )  ->  E. a  e.  NN  ( G `  a )  =  1 )
2116, 11, 20nconstwlpolemgt0 15001 . . . . . . . . . . 11  |-  ( (
ph  /\  E. y  e.  NN  ( G `  y )  =  1 )  ->  0  <  A )
2221ex 115 . . . . . . . . . 10  |-  ( ph  ->  ( E. y  e.  NN  ( G `  y )  =  1  ->  0  <  A
) )
2322con3d 631 . . . . . . . . 9  |-  ( ph  ->  ( -.  0  < 
A  ->  -.  E. y  e.  NN  ( G `  y )  =  1 ) )
2423adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  ( -.  0  <  A  ->  -.  E. y  e.  NN  ( G `  y )  =  1 ) )
2515, 24mpd 13 . . . . . . 7  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  -.  E. y  e.  NN  ( G `  y )  =  1 )
26 ralnex 2465 . . . . . . 7  |-  ( A. y  e.  NN  -.  ( G `  y )  =  1  <->  -.  E. y  e.  NN  ( G `  y )  =  1 )
2725, 26sylibr 134 . . . . . 6  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  A. y  e.  NN  -.  ( G `
 y )  =  1 )
2827r19.21bi 2565 . . . . 5  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  -.  ( G `  y )  =  1 )
2910ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  G : NN --> { 0 ,  1 } )
30 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  y  e.  NN )
3129, 30ffvelcdmd 5655 . . . . . 6  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  ( G `  y
)  e.  { 0 ,  1 } )
32 elpri 3617 . . . . . 6  |-  ( ( G `  y )  e.  { 0 ,  1 }  ->  (
( G `  y
)  =  0  \/  ( G `  y
)  =  1 ) )
3331, 32syl 14 . . . . 5  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  ( ( G `  y )  =  0  \/  ( G `  y )  =  1 ) )
3428, 33ecased 1349 . . . 4  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  ( G `  y
)  =  0 )
3534ralrimiva 2550 . . 3  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  A. y  e.  NN  ( G `  y )  =  0 )
3635orcd 733 . 2  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  ( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
3710adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  G : NN
--> { 0 ,  1 } )
38 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  A. y  e.  NN  ( G `  y )  =  0 )
3937, 11, 38nconstwlpolem0 15000 . . . . . . . 8  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  A  = 
0 )
4039fveq2d 5521 . . . . . . 7  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  ( F `  A )  =  ( F `  0 ) )
41 nconstwlpo.0 . . . . . . . 8  |-  ( ph  ->  ( F `  0
)  =  0 )
4241adantr 276 . . . . . . 7  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  ( F `  0 )  =  0 )
4340, 42eqtrd 2210 . . . . . 6  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  ( F `  A )  =  0 )
4443ex 115 . . . . 5  |-  ( ph  ->  ( A. y  e.  NN  ( G `  y )  =  0  ->  ( F `  A )  =  0 ) )
4544con3d 631 . . . 4  |-  ( ph  ->  ( -.  ( F `
 A )  =  0  ->  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
4645imp 124 . . 3  |-  ( (
ph  /\  -.  ( F `  A )  =  0 )  ->  -.  A. y  e.  NN  ( G `  y )  =  0 )
4746olcd 734 . 2  |-  ( (
ph  /\  -.  ( F `  A )  =  0 )  -> 
( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
48 nconstwlpo.f . . . . 5  |-  ( ph  ->  F : RR --> ZZ )
4948, 12ffvelcdmd 5655 . . . 4  |-  ( ph  ->  ( F `  A
)  e.  ZZ )
50 0z 9267 . . . 4  |-  0  e.  ZZ
51 zdceq 9331 . . . 4  |-  ( ( ( F `  A
)  e.  ZZ  /\  0  e.  ZZ )  -> DECID  ( F `  A )  =  0 )
5249, 50, 51sylancl 413 . . 3  |-  ( ph  -> DECID  ( F `  A )  =  0 )
53 exmiddc 836 . . 3  |-  (DECID  ( F `
 A )  =  0  ->  ( ( F `  A )  =  0  \/  -.  ( F `  A )  =  0 ) )
5452, 53syl 14 . 2  |-  ( ph  ->  ( ( F `  A )  =  0  \/  -.  ( F `
 A )  =  0 ) )
5536, 47, 54mpjaodan 798 1  |-  ( ph  ->  ( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   E.wrex 2456   {cpr 3595   class class class wbr 4005   -->wf 5214   ` cfv 5218  (class class class)co 5878   RRcr 7813   0cc0 7814   1c1 7815    x. cmul 7819    < clt 7995    / cdiv 8632   NNcn 8922   2c2 8973   ZZcz 9256   RR+crp 9656   ^cexp 10522   sum_csu 11364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-frec 6395  df-1o 6420  df-oadd 6424  df-er 6538  df-en 6744  df-dom 6745  df-fin 6746  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-ico 9897  df-fz 10012  df-fzo 10146  df-seqfrec 10449  df-exp 10523  df-ihash 10759  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-clim 11290  df-sumdc 11365
This theorem is referenced by:  nconstwlpo  15003
  Copyright terms: Public domain W3C validator