Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nconstwlpolem Unicode version

Theorem nconstwlpolem 15822
Description: Lemma for nconstwlpo 15823. (Contributed by Jim Kingdon, 23-Jul-2024.)
Hypotheses
Ref Expression
nconstwlpo.f  |-  ( ph  ->  F : RR --> ZZ )
nconstwlpo.0  |-  ( ph  ->  ( F `  0
)  =  0 )
nconstwlpo.rp  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( F `  x )  =/=  0
)
nconstwlpo.g  |-  ( ph  ->  G : NN --> { 0 ,  1 } )
nconstwlpo.a  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
)
Assertion
Ref Expression
nconstwlpolem  |-  ( ph  ->  ( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
Distinct variable groups:    x, A    y, A    x, F    y, F    i, G, y    ph, x    ph, y, i
Allowed substitution hints:    A( i)    F( i)    G( x)

Proof of Theorem nconstwlpolem
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 breq2 4038 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
0  <  x  <->  0  <  A ) )
2 fveq2 5561 . . . . . . . . . . . . 13  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
32neeq1d 2385 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
( F `  x
)  =/=  0  <->  ( F `  A )  =/=  0 ) )
41, 3imbi12d 234 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
( 0  <  x  ->  ( F `  x
)  =/=  0 )  <-> 
( 0  <  A  ->  ( F `  A
)  =/=  0 ) ) )
5 elrp 9749 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  <->  ( x  e.  RR  /\  0  < 
x ) )
6 nconstwlpo.rp . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( F `  x )  =/=  0
)
75, 6sylan2br 288 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR  /\  0  < 
x ) )  -> 
( F `  x
)  =/=  0 )
87expr 375 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  ( 0  <  x  ->  ( F `  x )  =/=  0 ) )
98ralrimiva 2570 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  RR  ( 0  <  x  ->  ( F `  x
)  =/=  0 ) )
10 nconstwlpo.g . . . . . . . . . . . 12  |-  ( ph  ->  G : NN --> { 0 ,  1 } )
11 nconstwlpo.a . . . . . . . . . . . 12  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
)
1210, 11trilpolemcl 15794 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
134, 9, 12rspcdva 2873 . . . . . . . . . 10  |-  ( ph  ->  ( 0  <  A  ->  ( F `  A
)  =/=  0 ) )
1413necon2bd 2425 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  A )  =  0  ->  -.  0  <  A ) )
1514imp 124 . . . . . . . 8  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  -.  0  <  A )
1610adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  E. y  e.  NN  ( G `  y )  =  1 )  ->  G : NN
--> { 0 ,  1 } )
17 simpr 110 . . . . . . . . . . . . 13  |-  ( (
ph  /\  E. y  e.  NN  ( G `  y )  =  1 )  ->  E. y  e.  NN  ( G `  y )  =  1 )
18 fveqeq2 5570 . . . . . . . . . . . . . 14  |-  ( y  =  a  ->  (
( G `  y
)  =  1  <->  ( G `  a )  =  1 ) )
1918cbvrexv 2730 . . . . . . . . . . . . 13  |-  ( E. y  e.  NN  ( G `  y )  =  1  <->  E. a  e.  NN  ( G `  a )  =  1 )
2017, 19sylib 122 . . . . . . . . . . . 12  |-  ( (
ph  /\  E. y  e.  NN  ( G `  y )  =  1 )  ->  E. a  e.  NN  ( G `  a )  =  1 )
2116, 11, 20nconstwlpolemgt0 15821 . . . . . . . . . . 11  |-  ( (
ph  /\  E. y  e.  NN  ( G `  y )  =  1 )  ->  0  <  A )
2221ex 115 . . . . . . . . . 10  |-  ( ph  ->  ( E. y  e.  NN  ( G `  y )  =  1  ->  0  <  A
) )
2322con3d 632 . . . . . . . . 9  |-  ( ph  ->  ( -.  0  < 
A  ->  -.  E. y  e.  NN  ( G `  y )  =  1 ) )
2423adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  ( -.  0  <  A  ->  -.  E. y  e.  NN  ( G `  y )  =  1 ) )
2515, 24mpd 13 . . . . . . 7  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  -.  E. y  e.  NN  ( G `  y )  =  1 )
26 ralnex 2485 . . . . . . 7  |-  ( A. y  e.  NN  -.  ( G `  y )  =  1  <->  -.  E. y  e.  NN  ( G `  y )  =  1 )
2725, 26sylibr 134 . . . . . 6  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  A. y  e.  NN  -.  ( G `
 y )  =  1 )
2827r19.21bi 2585 . . . . 5  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  -.  ( G `  y )  =  1 )
2910ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  G : NN --> { 0 ,  1 } )
30 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  y  e.  NN )
3129, 30ffvelcdmd 5701 . . . . . 6  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  ( G `  y
)  e.  { 0 ,  1 } )
32 elpri 3646 . . . . . 6  |-  ( ( G `  y )  e.  { 0 ,  1 }  ->  (
( G `  y
)  =  0  \/  ( G `  y
)  =  1 ) )
3331, 32syl 14 . . . . 5  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  ( ( G `  y )  =  0  \/  ( G `  y )  =  1 ) )
3428, 33ecased 1360 . . . 4  |-  ( ( ( ph  /\  ( F `  A )  =  0 )  /\  y  e.  NN )  ->  ( G `  y
)  =  0 )
3534ralrimiva 2570 . . 3  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  A. y  e.  NN  ( G `  y )  =  0 )
3635orcd 734 . 2  |-  ( (
ph  /\  ( F `  A )  =  0 )  ->  ( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
3710adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  G : NN
--> { 0 ,  1 } )
38 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  A. y  e.  NN  ( G `  y )  =  0 )
3937, 11, 38nconstwlpolem0 15820 . . . . . . . 8  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  A  = 
0 )
4039fveq2d 5565 . . . . . . 7  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  ( F `  A )  =  ( F `  0 ) )
41 nconstwlpo.0 . . . . . . . 8  |-  ( ph  ->  ( F `  0
)  =  0 )
4241adantr 276 . . . . . . 7  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  ( F `  0 )  =  0 )
4340, 42eqtrd 2229 . . . . . 6  |-  ( (
ph  /\  A. y  e.  NN  ( G `  y )  =  0 )  ->  ( F `  A )  =  0 )
4443ex 115 . . . . 5  |-  ( ph  ->  ( A. y  e.  NN  ( G `  y )  =  0  ->  ( F `  A )  =  0 ) )
4544con3d 632 . . . 4  |-  ( ph  ->  ( -.  ( F `
 A )  =  0  ->  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
4645imp 124 . . 3  |-  ( (
ph  /\  -.  ( F `  A )  =  0 )  ->  -.  A. y  e.  NN  ( G `  y )  =  0 )
4746olcd 735 . 2  |-  ( (
ph  /\  -.  ( F `  A )  =  0 )  -> 
( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
48 nconstwlpo.f . . . . 5  |-  ( ph  ->  F : RR --> ZZ )
4948, 12ffvelcdmd 5701 . . . 4  |-  ( ph  ->  ( F `  A
)  e.  ZZ )
50 0z 9356 . . . 4  |-  0  e.  ZZ
51 zdceq 9420 . . . 4  |-  ( ( ( F `  A
)  e.  ZZ  /\  0  e.  ZZ )  -> DECID  ( F `  A )  =  0 )
5249, 50, 51sylancl 413 . . 3  |-  ( ph  -> DECID  ( F `  A )  =  0 )
53 exmiddc 837 . . 3  |-  (DECID  ( F `
 A )  =  0  ->  ( ( F `  A )  =  0  \/  -.  ( F `  A )  =  0 ) )
5452, 53syl 14 . 2  |-  ( ph  ->  ( ( F `  A )  =  0  \/  -.  ( F `
 A )  =  0 ) )
5536, 47, 54mpjaodan 799 1  |-  ( ph  ->  ( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   E.wrex 2476   {cpr 3624   class class class wbr 4034   -->wf 5255   ` cfv 5259  (class class class)co 5925   RRcr 7897   0cc0 7898   1c1 7899    x. cmul 7903    < clt 8080    / cdiv 8718   NNcn 9009   2c2 9060   ZZcz 9345   RR+crp 9747   ^cexp 10649   sum_csu 11537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-ico 9988  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538
This theorem is referenced by:  nconstwlpo  15823
  Copyright terms: Public domain W3C validator